1. INTRODUCTION

In this paper, we adopt the techniques in [2] to study the behavior of the continuous time
latent voter model, which was considered by [5] in the mean field setup, on a random r-regular
graph on n vertices. We choose the random graph G,, on the vertex set [n] := {1,2,...,n}
according to the uniform distribution P on simple graphs, and once chosen the graph remains
fixed through time.

We write  ~ y to mean that z is a neighbor of y, and let

Ny={zen:x~y} (1.1)

be the set of neighbors of y. The distribution Pg,,  of the latent voter model with parameter
A conditioned on G, can be described as follows. At any time each vertex is either active or
inactive, and & (z) € {0, 1} denotes one of the two possible opinions of = at time ¢. Initially
all the vertices are active. When a vertex is active, at rate 1 it adopts the opinion of an
uniformly chosen random neighbor. Change in opinion makes an active vertex inactive. In
the inactive phase, a vertex does not change its opinion and returns to active phase at rate
A. Let A; be the set of active vertices and &, := {v : &(v) = 0} be the set of vertices with
opinion 0 at time ¢. If Py denotes the distribution of the latent voter model on the random
graph G, having distribution P, then

P,(-) = EPg, A(),

where E is the expectation corresponding to the probability distribution P. In this paper we
consider A = A\, such that logn < A\, < n/(logn)" for some n > 0. Here and later a,, < by,
(or equivalently b, > a,,) means a, /b, — 0 as n — oo.

2. CONSTRUCTION AND DUALITY

2.1. Construction of the graph G,. We construct our random graph G, on the vertex
set [n] :={1,2,...n} by assigning r “half-edges” to each of the vertices, and then pairing the
half-edges at random. If r is odd, then n must be even so that the number of half-edges, rn,
is even to have a valid degree sequence. Let P denote this distribution of G,,. We condition
on the event FE, that the graph is simple, i.e. it does not contain a self-loop at any vertex,
or more than one edge between two vertices. It can be shown (see e.g. Corollary 9.7 on page
239 of | |) that P(E,,) converges to a positive limit as n — oo, and hence

if P:=P(-|E,), then P(-) < ¢P(-) for some constant ¢ = ¢(r) > 0. (2.1)

So the conditioning on the event FE,, will not }Nlave much effect on the distribution of G,,. It is
easy to see that the distribution of G,, under P is uniform over the collection of all undirected
r-regular graphs on the vertex set [n]. Let

d(u,v) be the length of the shortest path between u and v, D(v, M) = {u : d(u,v) < M}
d(U,v) := mi{r} d(u,v) and G, be the subgraph of G,, induced by D(v, M). (2.2)

ue
We call v and M to be the root and depth of G, s respectively. If G,y has no loop, then it

is a finite r-tree, i.e., all the vertices except the leaves have degree r.
If we let

Li(Gy) := {v € [n] : Gy,1(1/5)10g, ,n] has at most i loops } ,i=20,1, and (2.3)

Gy, := {simple r-regular graph G,, on the vertex set [n] : |Lo(Gn)| > n — 2n*/°
and |L1(Gn)| = n}, (2.4)

LOG
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then the following probability estimates show that fP’(Gn €Gy) = 1lasn — co.
Lemma 2.1. For Lo(Gy) and G, as in (2.3) and (2.4),
(1)P(v &€ Lo(Gr)) < C’%ln*?’/f’ (2)P(G°) < 022'1n71/5forsomeconstcmtsC;l =% (r) > 0.

Proof. While exploring the vertices of G, one at a time starting from v and using a breadth-
first search algorithm based on the distance function d of (2.2), the maximum number of
vertices in Gy, [(1/5)10g, ,n] S T[1+ (r—1)+ -+ (r— 1)[(1/5)log, 1 n]=1) < 9pn1/5 So under
the law P at any step the probability of selecting a vertex that has already been touched is
< 2r2p1/5 /(rn — 2r2n1/5). So,

2r3n2/5 3
e —3/5
W Vi < ci(r)n=27, (2.5)

2r3n2/5
rn — 2r2nl/5

P(v & Lo(Gn)) < e(r)P(v & Lo(Gn)) < c(r)

P(v & L1(Gn)) < c(r)P(v & L1(G)) < c(r) ( > < ep(r)n™/°

6/5 1/5

for large enough n. Hence, P(|L1(Gy)| <n) < n-ca(r)n=6/% = ¢y (r)n~
Next observe that if Cl, and Cl, are the clusters of size 2rnl/> starting from v and w
respectively and Cl, ,, = Cl, N Cl,, then using similar argument as above

- 2r3n2/5
P(Clyw # 0) < ¢(r)————— < e1(r)n "%/ for large enough n.
’ rn — 2r2nl/5
Since on the event {Cl, ., = 0}, {v € Lo(Gy)} is independent of {w € Lo(Gr)},
P(v,w & Lo(Gn)) < P(Clyw # 0) +P(v,w & Lo(Gr), Cl, N Cly, = 0)
P({v ¢ Lo(Ga)} N {Cly N Cly = DDB({w ¢ Lo(Ga)} N {Clu = B})
P(Cly = 0)

so that covs(1iugro(Gn)}> L{wgLo(Gn)}) < 3P(Cly # 0) < 3¢1(r)n /% for large enough n.

< P(Clyw # 0) +

il

Using the above estimate and a standard second moment argument we get (2). |

2.2. Construction of &;. Since we will mostly work with the rescaled process §t)‘”,t > 0,
where ft)‘” := &),¢, here we describe the construction of the process ft)‘". To construct the
process, we use a graphical representation. For x € [n], we set W§ = 0 = V' and introduce
independent Poisson processes W? := {WZ : m > 1} and V* := {V,Z : m > 1} with rates \2
and )\, respectively. From the continuity of the exponential distribution it is easy to see that

Pao A, (VENWY =0 for all z,y € [n]) = 1.

For each = € [n], we put a dot at the locations (z, W2 ), m > 0, and call them ‘wake up dots’
for x. At the times W7, the vertex = becomes active irrespective of its earlier status. We call
the times V¥, m > 1, voting times for x. If x is active at some voting time V,%, it consults with
a random neighbor Y, ,,, having uniform distribution over N, to consider whether to change
opinion or not. So the value & (x) do not change for t € [V,¥_,, V7). The random variables
Y2.m,x € [n], are independent of the Poisson processes and all are independent of an initial
configuration &) € {0, 1},

We obtain the values 55‘” (z) recursively as follows. First we partition the voting times for
x according to their positions relative to the corresponding wake up dots. For m > 1, let

1= VIO WE W), (26)



So I% denotes the voting times for 2 between its (m — 1)** and m*" wake up dots.

I. If I =0, then we set {;"(x) = ‘/’\‘7“”_1(:6) for t € Wy, _1, W] (2.7)
and x is active during [W,,,_;, W7 ].

f‘),“}iil(x) fort € [W2_, <t<V?

m

2.8
g@gf(ym,k) for V¥ <t < W2 (2:8)

II. If I7 = {Vi’}, then we set {"(z) = {

and = becomes inactive at time V;” if and only if f{}}g 1(av) + 5‘)}]} ().

In case II, we call V¥ a single voting time and W, _, a single wake up dot for x. To facilitate
the definition of the dual process we draw an arrow from (z,V}’) to (Y, V)’) and call it a
voter arrow. For |I% | > 2 there are two cases depending on

=iV e I with 6 (@) £ 85(%20)}
Let jZ := min JZ when JZ, # 0.
5{}77?_1(96) for Wiy <t <V

1-— 5%71(3:) for V& <t < W2, .
2.9

II. If || > 2 and Jj, # 0, then we set &' (x) = {

and z becomes inactive at the time foc .
m

IV. If |I;| > 2 and J;, = (), then we set &' (x) = 51)/\‘7” 1(3:) fort € (W5 _,,Wr] (2.10)

m—1>
m—

and z remains active during [W,),_;, W ].

In other words, at the voting times Viely, x adopts the opinion of Y, ; for j < j¥ and
ignores the opinion of Y, ; for j > j» . In cases III and IV, we need to know the state of the
vertices x at time W7 _; and Y, ; at time V, ; for V;* € I, to update that of x during the
time interval [W?2 _;  W¥]. So in order to facilitate the definition of the dual, we write a x*
next to (z, W2 _,), call W _, a *-dot, draw an arrow from (x, W _) to each of (Y, W2 _,)
for k € {k: V¥ € I} }, and call these x-arrows.

It is not hard to show that the above recipe defines a pathwise unique process. To compute
the state of a vertex at time T we work backwards in time and use the following approximate
dual process.

At times it is easier to use notation for the independent Poisson processes of voting events
Af(dt,dy),z € [n], on R x N, with points {(V,%, Yy )} and intensity A, dt x 6, where 6, is
uniform over AV, and also the independent Poisson processes of wake up events AZ (dt), z € [n],
on R with points {WZ} and intensity A2 dt.

2.3. The approximate dual process X. Fix T' > 0 and a vector of M + 1 vertices z =
(20,...,2m), where each z; € [n]. The dual process X = X*7 starts from these vertices
at time 7" and then works backwards in time to determine the values §%”(zi). X will be a
coalescing branching random walk taking values in

D := [D([0,T], [n] U {oo})IN

and starting from Xy = (zo, ..., 2Mm,00,00,...). Here D(]0,T], [n] U{oco}) denotes the set of
all cadlag paths w : [0, 7] — [n] U {co} endowed with Skorokhod topology, and D is given the
product topology.



For X#1 = (X210 X=T:1 ) € D, let k*(t) = k(t) := max{i : X} # co}. Define an
equivalence relation ~; on {0,1,...,k(t)} as i ~ ¢ if X277 = th’T’il # oo, and choose the
minimum index from each of the equivalent classes to form the set J%(t) = J(t). We need to
know the states of the vertices in {X} : ¢ € J(t)} at time T — ¢ to determine the states of
20,---,2pm at time T'. We often drop the superscripts z, T" when there is no ambiguity.

If there were no *x-arrows, then the coordinates Xg 7€ J(t), follow the system of coalescing
random walks. Coalescing refers to the fact that if X! = X! # oo for some s < T and
7,7 < k(s), then Xg = Xg for all ¢ € [s,T]. Jumps in the coalescing random walk system
occurs when one of the particles in the dual encounters the tail of a voter arrow in the graphical
representation, i.e. if j € J(s—) and x = X]_ satisfy T — s = V}* for some k such that V}*
is a single voting time for x. In that case, we set X! = zk- The particle coalesces with
xi = =k if such a j’ # j exists, and we remove j V j’ from J(s—) to form J(s).

To complete the definition of the dual it remains to describe what happens when the dual
encounters the tails of *-arrows. Let RS’T = 0 and for m > 1 let Rf,;T be the first time

5> Rffz1 when a particle in the dual encounters the tail of a x-arrow. If

jeJRET-) and = = X;LT_ satisfy T — R%T = W, for some k and |If| > 2, (2.11)

then we set the parent site index p,, = j. If |I[[| = £y, and I} = {V/%,,...,Vj%, }, we create
¢, many new particles in the dual by setting Y =Y, A+
Z T ( m 1)+7’ 7 ;
B(RET) = K(REE,) + b, and X —Yi1<i<ly, (2.12)

Since |I7] | {|If]| > 2} has shifted geometric dlstrlbution,

An
Paan(bm = k) = A+ a)F T

The values of the other coordinates remain unchanged, i.e. Xj% T = X; o7 for all j €

m

k=2,3,... (2.13)

J (Rf,;T—). Each ‘new’ particle immediately coalesces with any particle already present at the
vertex where it is born, and we make the necessary changes to J(R%' —) to get J(R%') D
J(R%T ).

The computation of f%" (z;) using the dual is described in the next subsection. k() changes
only at the times {R%’ : m > 1}, and so it remains unchanged on [R%, Rf,’il).

Note that X; is not measurable with respect to the o-field generated by the wake up dots
and voting times within [T — ¢, 7. Let

A%y = {|Ln@r—y| =1}, where m(z, s) := min{m > 1: W > s}

is the last wake up dot for x before time T — ¢ for the time reversed process. Consider the
right-continuous filtration {F} :t > 0} given by

Fl =0 ({A2([T —5,T] x A): s <t,A C Ny, € [n]}
U{AL ([T —s,T]) : s <t,x € [n]}U {1“% tx € [n]}) . (2.14)
Then the dual X*7 is Fl-adopted.

Lemma 2.2. Let {R%"} be the random times defined just before (2.11), {(ttm, €, YL .. Yim))

be as defined just after (2.11), and {FL :t > 0} be the filtration defined in (2.14). Then
(1) the dual process Xf’T is Fi -adopted,
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(2) R%T s .F,T—stqpping time and R%T 1 0o a.s.
(3) timybm and Y, 1 < i < Ly, are ‘F;sz measurable.

Proof. Since the wake up dots and the voting times for x are independent Poisson processes
with rates A2 and A, respectively, |IZ|,m € Z, are i.i.d. with Geometric(A2/(\, + \2))
distribution so that

Po, o, (5| = k) = and Pg, , ([I%] > k) = Cfork=0,1,.... (2.15)

n 1
(14 \p)ktHL (1+ )
Specifically, for each z € [n] and m € Z, W2 is a x-dot with probability 1/(1 + \,)? indepen-
dently of other wake up dots. So if we reverse time, then using the thinning property of the
Poisson processes and noting that the time reversed Poisson process is also a Poisson process
with same intensity, the *-dots for x form an ]-'tT -adopted Poisson point process with intensity
A2 /(1+ )2
(1). Note that the birth of new particles at some time in the dual depends on whether one
of the existing particles comes across a #*-dot or not. Since the *-dots by time ¢ are F/ -
measurable, so are the birth events. On the other hand, jump events depend on whether one
of the particles in the dual encounters a single voting time or not. Now if time is reversed,
then in order to know whether a voting time V;* > T —{ is single or not we need information
about the events {{|I%| =1} : m > m®(T,t),x € [n]}. Thus, all the jump events in the dual
are ]-"tT -adopted, and hence so is X.
(2). Since X is F/ -adopted and R is the first time after Rilzl that one of the particles in the
dual has its first *-dot, R%T must be a F['-stopping time by induction on m. Moreover, since at
most r new particles are born on every birth event, it is easy to see that Pg,, x, (R:f;l —~R%" >
| Frar) = P((M+1 +rm)~tZ > .), where Z has exponential distribution with mean 1. This

ensures that R%7 1 0o a.s.
(3). Since fi, is uniform over J(R%' —), it must be fgz,T—measurable. By the definition of

b, and Vs, by, = |I¥] and VY, 1 < i < £, are chosen uniformly from N, where z = X;ZfT_

and T — RfﬁT =W | are as in (2.11). So ¢, and Yis are fgz,T—measurable. [ |

2.4. The computation process (. Given the coalescing branching random walk {X?’T :
s € [0,T]} and a set of initial values (o(j) = 5" (X7),j € J(T), we will define {(;(i),t €
[0,77,i < k((T'—t)—)} so that on a ‘good event’

EZ (defined in (2.18)), ,¢;(i) = &M (X5, )Vt € [0,T] and i < k(T —t)—). (2.16)
Note that X and ¢ have different time directions.
First we complete the initial states by setting (o(j) = (o(7) for j ~p i € J(T). The values
(¢(7) do not change except at times t =T — Rz’T. So if h = max{m : R&T < T}, then ¢ = (o
fort < T — RZ’T. To update the values of ¢ at time T" — R}ZZ’T first we consider pj and set

c () = {1 — C(T_RZ,T)_(,U,h) if C(T_RZ,T)_(}L}L) # C(T_RZ,T)_(Y,f) for at least one 1,
T—R} -

C(T_RZ,T)_(ML) otherwise.
For k < k(RZ’T—) and k # up, we set

CT—RZ’T(k) = CT—RZ’T (up) if k NRZ,T up and CT—RZ’T (k) = C(T—RZ’T)—(]C) otherwise.



sect_Xhat

6

The values (;(7) remain the same for ¢t € [T — RZ’T, T— R,zlfpl). If h > 2, we proceed as above.

Otherwise we have reached t =T — RS’T =T, when we set (7 = (7—.
Having defined the computation process we now describe EZ for which (2.16) holds. Recall

the notations (R% , x, k, Y, i) used in and just after (2.11). The states of Y}/, at time V;%,
must be the same as those at time W}’_,, otherwise there may be a discrepancy between ¢
and £*. Also whenever an old particle jumps or a new particle is born in the dual process,
it will land between two successive wake up dots with high probability. To avoid erroneous
computation of states we need to make sure that there is at most one voting time between
those two successive wake up dots. Keeping these in mind, we define

=l {gtn(y,;) =&y, (Vi) for t € Wy, W] and i < |1;§\}, where (z,k, Y1) are as in

N(z,T) :=max{m >0: R%" <T}, and (2.17)

E% .= (ﬂﬁ(:ziT)Ef,;T> N (ﬂ{(x P<T xixz,T,iin,TZ}{Wm _, is not a - dot}) (2.18)
b)) b4y b—Ay t—

Lemma 2.3. Let E% be as in (2.18). Then (2.16) holds on E% and Pg,, x,(E%) =1—o(1).

Proof. E%T oceurs if there is no voting arrow for the neighbors of & during [W}?_,, W[]. Since
x has r neighbors, Pg,, A, (Em Ty > 1= X\ur/(Anr 4+ A2). This bound and Lemma 2.8 imply

Pa ( Moo T) > Po, a0, (W EST) = Pa, a0, (N(2,T) > V/A)
VAn (M + 1)erT
> 1-— —
- L+ M\/r M+1+2V\,
Whenever z = X} # X}, W o)1 18 a #-dot with probability A2/ 4+ A2)]2 < 1/)2.
Since the expected number of jumps within time [0, 7] for each particle is < A\, 7'+ 1, a single

particle encounters such an event with probability < T/, +1/A2 by Markov inequality. Now
if N(z,T) <k, then the total number of particles is < (M + 1) + rk. So using Lemma 2.8,

=1-o0(1)

PGn,)\n (U{(:r i,t):0<t<T,i<k(t),o=X{#X}_ }{ m(z,t)—1 Is a *- dOt}>
< PGn,)\n(N(Z,T) >V An ) M+1+7’\/ )\2 0(1).
Combining the two estinates we get the desired result. |

2.5. Branching random walk approximation X. Recall from (2.15) that Pg, ,(|I%| =
1) = Ay /(1 + \,)?, which implies that if time is reversed, the rate of the single wake up dots
{We 1% 4] =1} is A3 /(1 + Ay)? So when A, is large, the random walk steps in the dual
are taken very fast (roughly with rate A,).

Noting that G, locally looks like the homogeneous r-tree, random walk on a tree is transient
and random walk steps are taken very fast in the dual, the newly born particles will either
coalesce quickly among themselves or with the parent within a short time which is o(n), or do
not coalesce before time O(n). Asin [1], it is difficult to deal with such a process, where births
of new particles are quickly followed by coalescence. To avoid this problem we introduce a
non-coalescing branching random walk X along with the corresponding computation process
¢ which approximates X and ¢ respectively. We will use a coupling between (X, () and (X, ¢ )
later to estimate the difference between them.

—

2.11),
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For m > 1 let I1,,, be the set of all partitions of {0,1,...,m} and we write i ~, j if i and j
are in the same cell of 7. For = € Il,, let Jy(m) be the subset of {0,...,m} consisting of the
smallest indices of the cells of 7 and |7| = |Jo(7)| be the number of cells of .

For m € {1,...,7} and Y = (Y°,...,Y™) such that Y',..., Y™ € Ay, let {SY =
(StY’O, Cee StY’m), t > 0} be the rate one coalescing simple random walk system on the homo-
geneous r-tree T, with paths in [D([0,00), T,)]™*! and initial state S = Y. Since simple
random walk on T, is transient, for any ¢t > 0 we get a random partition of {0,...,m} based
on the equivalence relation i ~! j iff StY "t = StY 7. Let {a,} be any sequence such that a, 1 oo
and

Em,a, be the law on II,, associated with the equivalence relation i ~ j iff S;i 4= SZL’J' .
(2.19)
It is easy to see that
Em,a, Weakly converges to =, o as n — 0o, where =, » is the law on II,,,  (2.20)
associated with the equivalence relation 7 ~°° j iff StY b = StY 7 for some ¢ > 0.
Recalling the distribution of the new particles born during a birth event in the dual X, we
let M be the random size of the subset obtained after | many ‘with replacement’ draws from
{1,2,...,7}, i.e., M 4 [{L1, La, ..., Li}|, where L;s are i.i.d. with common distribution Uj,.
We will consider the law

Egnt a0, 0N Uy [T, where £ has shifted Geometric distribution as in (2.13). (2.21)

Since A, — oo implies P(M’ = 1) — 1/r and P(IMM* = 2) — 1—1/r, using standard argument
for weak convergence

1 1
Eont 4. converges weakly to Eoo i= —Z21 o0 + <1 — > 29 00- (2.22)
yYn /r. ’ /r, ’
Fix distinct sites zo, ..., 2y € [n] and T > 0. Our branching random walk X will have paths

in D. It will also be associated with a collection of sets of indices j(t) ={j: X,f # oo}, t >0,
and numbers k(t),t > 0 (analogous to J(t) and k(t) of Section 2.3). It will start at time
T and will be defined backward in time. Let my € IIj; be a partition (defined explicitly in
Section 2.7) associated with the initial coalescence in the dual before any birth event. For
k> 1, let (¢4, L*, m;) be independent of 7y and i.i.d. such that (i) £; has distribution as in
(2.13) (i) L' = (L{,..., L} ), where L}s are i.i.d. with common distribution Up,; and (iii)
7 |(fy, LY) ~ Egnt1 g, Where mh = |{L1,... ,L%l}, B and w, will be explicitly defined in
(2.29) and Z.. is defined in (2.19). Based on the sequence of partitions {m;,k > 0} and
{(4,,L¥) : k > 1}, we define a sequence of subsets of N inductively as follows:

Jo = Jo(mo) and Jyyq = Jy U{M + 4y + -+ 4+ 7 : j € Jo(mpg1) \ {0}} for k> 0. (2.23)

Similar to the analogues corresponding to X, let RS’T = 0 and conditioned on {f,,,m > 1}
and {m,,m > 0} let anzl — R%" be independent and exponentially distributed random
variables with mean [A2|J,|/(1 + An)?]~L. Also let {fi,, m > 1} be an independent sequence
of independent random variables where fi,, is uniform over jm,l, and set

k() =M+, + -+ 4y, and J(t) := Jy, on [RET,R#%) .

In the branching random walk X, [im is the index of the site which gives birth at time R=T
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Conditioned on {(RTZnT, fim, jm) :m > 0} we now define X inductively as follows.

i Jzitied (2.24)
oo otherwise. '

For m > 0, the particles X ,J € jm, follow independent Copies of simple random walk (starting
from X7, T respectively) on the time interval [Rf,LT, Rm +1) Jumps in the random walk occur

when a partlcle encounters a smgle voting time. Recalling that 6, denotes the law of uniform
distribution over N, at time &% i1 We set

X‘;” ifj e Jm

. R m+1" A . R
XL, o= Ym+1, where Y ~ 0, for x = X"R’:;1 ,if 5 € Jmi1 \ I
m+1 m4+1"

oo otherwise.

The choices Y 7+1 are made independently. We have set J(t) = Jp, on [RET, Z%f,:_l) so that

no coalescence occurs after the birth of the particles. Also note that the number of new
particles are less than those in case of X to mimic the quick coalescence there. Therefore,
if we condition on {(£,,, L™, 7))} and time is reversed, then X is a branching random walk,
where the initial particles are at zj,j € Jo(m), each particle jumps to a random neighbor
whenever it encounters a single voting time and branches at rate A2 /(1 + \,)?, and |7,,,| — 1
new particles are born on randomly chosen neighboring vertices of the m-th branching site.

2.6. Computation process C As in Section 2.4, the branching random walk {X
[0, 71}, the associated sequence { (€, L™, T, RET i)} and a set of initial values (o(j ) Jje€

J(T), we now define a computation process ¢ for X on the time interval [O T]. We start with

the definition of an equivalence relation ~ g on {0,1,..., M +01+ -+ U}

For 0 < j,j' < M, j& parj" iff j ~ory ',

k—1
for 1 <k <mand1<j <l M+ li+j~par iy iff Lf ~r, 0, (2.25)
i=1
k—1 k—1
for 1 <k<mand1<j,j <lp, M+ li+jfparM+ Y C+ 4 iff L ~p LY.
=1 =1

Extend the definition of the equivalence relation to [0, 7] by setting j~j" iff j~ sarj’ for
Ryl <t<RZ, and0<j,j' S M+ L0+ + by

The definition of C is similar to that of ( in Section 2.4 with hats added to the notations.
First we set (o(5') == Co(j ) for §' < k(T) and j’erTj € J( ). The values Ct( /) do not change
except at times ¢t =T — Rk So if h = max{m : RET < T}, then G=Cfort <T— R
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To update the values of f at time T — R,ZLT we set

1- é(T_[gfL’T)_Olh) if CA(T_QZ,T)_(/th) a CA(T_R;T)_(M +l 4+l + )

CAT_RZ,T(ﬂh) = for at least one j € {1,..., 4},
h ~
C(T7RZ,T)7(,[I/h) otherwise.

{gT per(in) ik < k(R —) and k # fu, and B gt i

$ PZ, k - [N
Cr— g (F) Cor_pery_ (k) ik < k(R —) and k gt iin:

The values (;(i) remain the same for t € [T — RZ Lo R,zl Tl) If h > 2, we proceed as above.
Otherwise we have reached t =T — RS - =T, when we set (T = (T_

2.7. Coupllng of (X,() and (X ¢ ). Here we describe a construction of the branching ran-
dom walk X and the associated computation process C using the graphlcal representation
such that if A, is large, then with high probability the dual X is close to X and both ¢ and
ﬁ will compute the same result at time 7T given identical inputs at time 0. As earlier, fix
20,---,2m € [n] and T > 0. Recall the time-reversed filtration F; defined in (2.14) and the
stopping times {R%" : m > 1} defined in Section 2.3.

To define the partitions {m,, : 7n > 0} needed for the construction of X, first we introduce
the following useful notation. For a F T stopping time ¢ and ]:(,T measurable random vector

Y = (Yo,...,Yar) € [ let {So.t = (5’:50, . ,S’Et’M/) :t > o} be a system of coalescing
random walks on G, starting at time o at locations Y and satisfying the following jump
rule. Whenever a particle in the system encounters the tail of a voting arrow in the graphical
representation, it jumps to the other end of it. When o = 0, we write S’tY instead of S’P{t. For

0,Y as above and any ¢t > 0, let

7oy (t) € I be the random partition at time o + ¢ (2.28)
associated with the equivalence relation j ~ j’ iff SU Cay = 3(0 - Call m;y(t) the random

partition at time o + ¢ with initial condition Y at time o.
In order to have desirable probability estimates for several events we define

wn = (1/@)log,_;(n/\n) and €, := Bwpn A2 (14 An)?, (2.29)

where 8 and w = 3wy are positive constants defined in Proposition 5.5, and consider the
time €, for the rescaled process §t)‘”. Since logn < A, and particles jump roughly at rate
A3 /(14 A\p)?, the time €, is small (¢, — 0 as n — oc), but for large enough n it corresponds
to a large time, which is roughly equal to Sw,, (w, — 0o as n — o0), for the unscaled process.
Using the above ingredients and y,, := (X;’z’fT, YL .., Vi) form > 1, where {pm, R%", (

i <)} are as in (2.12), we define
Ty = Toz(€n) € s and for m > 1, (2.30)

— {WR%T7y7,L(en) if RZ" > R¥T + ¢, for all 1 <k <m and Xi2r € Lo(Gn)
o, otherwise,
where Lo(G,,) is as in (2.3) and {7}, : m > 1} is an i.i.d. sequence of partitions with law
Eoe g, (Bgne,. is defined in (2.21)) and chosen independent of FZL.
Recall the notations 7/ and m(z,t) defined in and just before (2.14) respectively. Also

recall the well known facts: (i) time-reversed Poisson processes are Poisson processes with the

(2.26)

(2.27)

pi_Y

omega_n

Yo, 1<
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same intensity; (ii) in case of superposition of two independent Poisson processes (type I and
IT), the locations of the points are independent of whether the first point is of type I or not;
(iii) homogeneous Poisson processes have translation invariance and independent increment
properties. Using these facts and (3) of Lemma 2.2, if Fl := f;zﬂTﬁ V o (m,, k < m), then
T is FL-measurable and is independent of FL_;.

Now we show that for each m > 1, m,;, has law Zgy g, , where Egp . is described in
(2.21) and (8,w, as in (2.29), with high probability. In order to do that, let {S;™Y =
(St)‘"’y’o, cee St’\"’y’m) : t > 0} be a coalescing system of random walks on G, starting from

An?

S"Y =y = (Y0, Ym)

with associated partitions 7% (¢),t > 0, of {0,1,...,m}, (2.31)
in which each particle jumps at rate A2 /(1 + \,)? to a randomly chosen neighbor.

Proposition 2.4. (1) Fory € [n], the random walks S¥ and St/\”’y (described just before
(2.28) and (2.31) respectively) can be coupled so that
(a) for any T,L >0 Pg, ,(SuPp<s<Ts d(SY,80"Y) > L) < Cyue L,
(b) fO’F any &n \lr 0; PGn,/\n (Supogsgsn d(§g7 S?my) > 2) <ént 1/)‘n
(c) for any s > 0 and k < r if (V%,...,B%) is an ordered tuple of ‘without replace-
ment” draws from Ngy, then

drv (£(BL) ,Upy) < dpv (£(8Y) ,Upy) < drv (£(82%) Uy ) 1 < <k

n,y

(2) For any 'y = (Yo,...,Ym), the coalescing random walk systems S’g’ and S{\ can be

coupled so that

pi~lambda

(a) for any ey | O the associated partitions mo .y (+) and 7Y () satisfy Pg, », (7Y (e,) #

mo.y(€n)) < (m+1)(en +2/An).
(b) In addition, if yo € Lo(Gy) (defined in (2.3)) and yi,...,ym € Ny, and e, <
(1/5)1og,_; n(1 + X\,)2 /A3, then mY () ~ Em,end /(140,)2 defined just (2.20).

Proof. We couple the locations of two particles as described below so that they follow the
random walks S%’ and St)‘ "Y respectively. They start from y at time 0. Whenever the first
particle hits the tail of some voter arrow in the time-reversed graphical representation, i.e.,
it encounters a single voting time, it allocates the jump time (if it is not already allocated)
for the second particle to be the corresponding single wake-up dot and jumps to the other
side of the voter arrow. The second particle jumps at its allocated jump time to the neighbor
of its current location following the trajectory of the first particle. Once the second particle
jumps, it waits for the next allocated jump time for jumping again. By the construction of
the graphical representation and noting that single wake-up dots occur at rate A2 /(1 + \,)?,
the two particles have the desired behavior.

It is easy to check that if the first particle jumps k£ times before the second particle jumps
once, then the distance between them after the jump of the second particle is at most k — 1.
To estimate the probability of the above event we use memoryless property of the exponential
distribution and the facts that the voting time and the wake-up dots occur at rate A, and
A2 respectively. A voting time is followed by a wake-up dot with probability A2 /(\, + A2).
So for any x1,x9,... € [n] such that z;41 € Ny,,i > 1, the probability that between a single
voting time and corresponding single wake-up dot for x; there are [ or more voting times
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tyg < .- <tj41 < --- for the vertices xa,..., 241, ... respectively is
o k 2 2 -1
< 1/A,. (2.32)

Hence the distribution of the number of jumps for the first particle between consecutive
jumps of the second particle is stochastically dominated by Geometric distribution with mean
An/(An —1). Consequently, if N(T') is the number of jumps for the second particle by time T’

and &1, ®,, ... are i.i.d. an the common law is Geometric with mean \,/(\, — 1), then
N(T)+1
sup d (S‘g, Si‘”’y) is stochastically dominated by Z &, — N(T). (2.33)
0<s<T P

(1a). Using (2.33) and noting that Eexp(zij\;(lT)Jrl ®; — N(T')) < C2.4(T) for some constant

C5.4(T), the result follows by Markov inequality.
(1b). Using (2.33) and Markov inequality

N(en)+1

P sup d (5%, 53 >1><P Lo > 1
CinAn (ogsgin < ) = ; (&:>1) =
N(en)+1
Angn +1
s B Z 1{e,>1} = E(N(en) + 1)P(61 > 1) < Anfn T 1

A
i=1 n

(1c) We begin with the second inequality. Let Js be the difference between the number of
jumps for the two particles at time s and By (v) C [n] be the set of all vertices which can be
reached from v after k random walk steps. The coupling constructed above suggest that

FPan, (5‘2 = v) = > Po,n, (5'3 = U‘ Js = k) P, s = k)
k
- Z Z Pe (Sg = v, Sy = uhs = k) Pe,p, Js = k).
k ueBg(v)

Using reversibility of the underlying discrete time simple random walk and by the definition
of total variation distance

D7 Powa (S8 =[S0 = w30 = k) = LRy, (S2¥) = 1/n| < drv (£(S)"%, Up)).
wEB (v)

Combining the above observations with the fact that Sam¥i and ¥ s are independent we have

. 1
Pe, A, (Sé’ = v) - =

<2

k u€eBy

1 i
Pa o, (8200 - n‘ Pay @ = K)Pa,n, (87 =0 829 =, 3, = k).

Summing both side over v € [n] and dividing by 2 the second inequality is established.
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To prove the first inequality note that for any u,v € [n] such that Pg, », (0% = u|SY =
v) =1/r.So

Pa, ., (T Z PGn,/\n = v), which implies
vENu
,Z Pa (T = u)— * <iz S [ Papan (8 = v) — 4.
n, —_— 2 S n

u€ln] u€[n] vENy

Interchanging the sums over u and v we get the desired inequality.

(2a) We use the coupling between 5% and S,

for 0 < ¢ < m to define the coupling between
the coalescing random walk systems SY and S;"¥. It suffices to show that Pg, oy (52, #
S2"¥) has the desired upper bound, as SY, = S2*¥ ensures Toy(en) = ™Y (e,). If
SUPg<s<e, d(SY, S;,\”’yi) <1foralli=0,1,...,m, and if the time &, is not between a single

voting time and the corresponding wake up dot for the locations of the particles in the Sg’ Sys-
tem at that time, i.e., the wake up dot immediately after time (in the time reversed graphical

representation) &, is not a single wake up dot for each of these locations, then S’gn = Sa)‘f’y.
Since there are always at most (m + 1) particles in the two systems, we can use (1b) to have

RS9 82 < e [P (2 0(50.907) 1) + (25
< (mtD)(En+2/).
(2b) Tt follows from the fact that if yo € Lo(Gy) and y1,. .., ym € Ny, then {SM"Y : 0 < t <
(1/5)1og,_; n(14+A,)%/A2} has the same distribution as {SA%/ a2 0SS (1/5)log,_; n}
(defined in Section 2.5) after appropriate relabeling of the vertices of T,.. |
So (2) of Proposition 2.4 ensures that {7, : m > 1} described in this section and in Section

2.5 have the same distribution with high probability. The next step in the construction of X
is to check whether certain ‘bad events’ occur to it or not. To do so, we use Lo(Gp), (€n,wn)

and (pm, R%") defined in (2.3), (2.29) and (2.11) to introduce the stopping times
Tm := inf {s > Rfr’zl +€n : d(XI, XT) < w, for some j,j' € J(s) with j # j/}
Om = inf{s > R®" . XJ = X7 for some j # j/ with either j j e J(R®T =) or
j € JEEL =)\ L} and §' € J(RED )\ J(REE )}, (2.34)
K := min {m X“mT ¢ Lo(G )}

We also let S} be the continuous time rate one simple random walk on G,, and choose ¢ > 0
large enough so that

sup dry (L(SY),Up,) < 1/n? for all s > plogn. (2.35)
y€[n]
Based on the above stopping times and the choice of ¢ we define the time T} when one of the
four possible bad events occurs.

logn
T, = min{ R%T :m > 1 and either R%7 < %7, + 2980 o o=
b mm{ m and either m—1 T %/(1+>\n)2 ork=m

/\min{Tm:mZ 1 and 7, <Rf,’LT}/\min{am:m2 2 and o, < Riﬁl—i—en}.

’ tausigmakappa

varrho
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We consider the last minima for m > 2 as we may not have control over the distance between
initial particle locations zg,...,zp. We expect the last two minimum to be large, because
after a birth of new particles from the particle u,, at time Rfr’LT we expect some coalescence
among the parent particle and its children. After time €, particles get separated by a distance
O(wr,) and stay away from each other till the next birth event, when new particles are born in
the neighboring sites of a new parent particle and there can again be coalescence of particles
only within the new family.

Having defined {7,,} and Tj, we now construct the branching random walk X on [0, T})
and {(fim, R%") : R4 < T} with law as described in Section 2.5. Later we will show that
Ty, > T with high probability, so that we can define X on [0,T]. The coupling of X and X will
be through the definitions of {(m,, tim, Rf,’LT)} and also through the use of the paths of X/
to define the corresponding paths of X7 for suitable choices of the superscript j as described
below. ' '

Our inductive construction begins by setting R(Z)’T =0.If RT’T < €, then we set X7 = X7
for j € J(RT’T—) and s € (O,Rf’T), and the construction of X on [0,7}) is complete as
Ty = RT’T. Otherwise, let J(0) = Jo(m) and define Xg as in (2.24). Observe that

if R%T > €, then J(0) = J(e,) = Jo(mo). (2.36)

In that case, for s € |0, R=T A Ty) we set X! = XI for j € J(0). Since r=T > €, implies
1 J 1 p
T, > €, and there is no coalescence in X during (e, RT’T A Ty), we can set

J(s) = J(0) C J(s) for s € [0, R?’T ATy) so that J(s) = J(s) = J(en) for s € [en, RT’T ANTy).

If RT’T <ATb’ then we set RTT = RT’T,[M = p1 and j(RTT) = JOYU{M +j:j € Jo(m)}.
At time RT’T = RT’T, we set

XéLT if j € J(0)
L T . R
X, r=9X, . ifjeJRP)\ J(0)
R% R%
00 otherwise.

Assume now that for some m > 1, X has been defined on [0, RZT A T,) with the property
that Rf,;T < Ty implies

ROT = RYT g = ey J(RET) = J(RET ) UM + 0y + - 4+ g+ 2 § € Jo(mi) \ {03},
j(RZ—Tl) = J(s) C J(s) for all s € [RZ’_ThRZ’T)’ and
j(s) =J(s) = J(Rzﬂ +¢€,) for all s € [RZf’l + 6n,Rz’T) .37

for 1 < k < m. The description after (2.36) explains that the above assumption is true for
m = 1. To extend the definition of X on [R% AT}, Rf,fil ATy) we may assume that R%! < Tj,.
Then by our assumption, (2.37) holds for all 1 < k& < m. At time R=T — R%2T wwe set

X;T = Xéﬂ_ for j € J(R®" ) and Xj%T = Xéﬂ for j € J(RZT)\ J(RZT)). (2.38)
For s € [RfﬁT,Rf,’il ATy) and j € J(RED), we set J(s) = J(R%") and X7 = X{. To verify
(2.37) for k = m + 1 note that

R%" | < Ty implies R%! +¢, < R%L, < T, (2.39)

induct hyp

Xhat_Rm def
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as R%L < Ry' + e, implies Ty, < R%", . So if R, < Ty, then for all s € [Riy', Ry’ + €,
J(s) = JRET) = J(REL)U{M + 6+ -+ L1 +5 2 § € Jo(mm) \ {0}}
= JRED v en) UM + 0+ 4 b1+ 1§ € Jo(mm) \ {0}}. (2.40)

The last two equalities follow from (2.37) by using s = Rf;zl +en. Tp > R%T + ¢, also implies
Tm > R%T | so that there is no coalescence in X during [Rfril + €n, RTZﬁT) making

J(REL, + ) = J(RpT—), (2.41)

and the new particles born at time R%" do not land on existing particles, as no two of the
existing particles are neighbors. In addition, Riﬁ;l NTy > Rfr’LT + €, implies Rfrﬁ;—l A Omg1 >
R%T + €, ensuring that there is no birth of new particles during (Rﬁ’,,T, R=T 4 €n] and particles
that can coalesce during [Rf,’LT, R&T 4 €n) are in {X 1’; m Y Yy So using the definition
of mp, in (2.30) and combining (2.40) and (2.41),
J(RET +e,) = JRET)YU{M +6+ -+ by +j: 5 € Jo(mp) \ {0}}
= J(s) for all s € [R%T, R%T +¢,].

Since Tyy1 > Rfr’il A Ty, there is no coalescence for X during [R%" + en,RffH A Tp) so
that J(s) = J(Ry' +¢,) for all s € (R + en, R2E A Ty). If Ty > R%L,, we set B2 =
Riﬁl,ﬂmﬂ = tm+1 and use k = m + 1 in (2.37) to define JA(R;EFH) This completes the
description of X on [0, R:f_;l A Tp) with the property in (2.37) for 1 <k <m + 1.

Clearly fip.1 is uniform over .J (Rffkl—) = J(R%Z" + ¢,) (given mpy,), as all the particles
present at time s > RfﬁT + €, are equally likely to be the first to give birth, and it is
independent of {jix : &k < m}. Also f%fmTH — R%" conditioned on ]:}%4 r (and 7,) has an
exponential distribution with mean [A2|J(R%" + €,)|/(1 + Ap)? L. Thus, X behaves like the
branching random walk described in Section 2.5 on the interval [RfﬁT, Rzlb_TH ANTp).

Since R%! T ooasmT, X can be defined by induction on [0,7};). The above arguments
and the inductive proof of (2.37) can be summarized as the following lemma.

Lemma 2.5. Form > 1, let

Fy = {/\2”_1 (R;?T _ RZ’_T1> > m} N {N,;'“;Q (ak . RZ’_T1> > en}
O{R?T < 7 for all 1 Sk‘gm}ﬂ{ﬁ>m}.

Then (a) Fp, C {R%" = RET < T} and (b) (2.37) holds for all 1 < k < m.

Now we use the above coupling of X and X to show that with high probability the com-
putation processes ¢ and ( return the same value at time 7' given identical inputs at time 0.
Using the branching times RfﬁT, m > 0, for the dual X*7', the events F},, described in Lemma
2.5 and N(z,T') defined in (2.17) as ingredients, we define

F} = Fyryn 0 {T ¢ NG RET RET + 6]} (2.42)
The following lemma provides a necessary estimate for the probability of the event FZ.

Lemma 2.6. If logn < A\, < n/(logn)" for some n > 0, then for any T > 0 and z =
(207 s 7ZM)7 SUPG+meg,, PGn,An((F%)C) = 0(1)'

eq2
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Lemma 2.6 suggests that F'% occurs with high probability when G,, € G,,. On this event,
J(T) = J(T') and both computation processes will compute the same output.

Lemma 2.7. On the event F%, Co(j) = Co(j) for all j € J(T) implies Cp(i) = Cp(i) for all
i=0,...,M.

Specifically, if (o(j) = fon(X%) for all j € J(T'), then Lemma 2.7 and (2.16) suggest that
on the event E% N F2, (p(i) = f%” (z;) for all i =0, ..., M. This observation will be crucial in
proving the Theorem 3.1 below.

Proof of Lemma 2.7. By the definition of Fy, 1)41 D F7 and Lemma 2.5,
Rf\’,r‘(ﬁz’T) +e, <T < Rf\’,@T)H, and so
R%T = R%T [y =y for m < N(z,T), and k(s) = k(s) for s € [0,T].

As mentioned in Section 2.6, the inductive description of é is the same as that of { with hats
added to the relevant notations. In view of the last display, it remains to verify that the
equivalence relations ~; and ~; are same. |

2.8. Proof of Lemma 2.6. We begin with estimating N(z,T).

Lemma 2.8. Letz = (2,...,2m) and N(z,T) be as in (2.17). Then Pg, A, (N(z,T) > k) <
Cy5(M) exp(—cas(M,T)k) for some constants Cog,cog > 0.

Proof. Consider a Yule process which starts with r particles and each particle gives birth to
r new particles at rate 1. It is well known that if we let G,; be the law of the number of
particles in such a Yule process at time ¢, then G, ; is r times Geometric with mean €. So

Gri({k,k4+1,...}) = (1 —e O/, (2.43)

Since each particle in the dual X*” give birth at rate < 1 to at most r new particles at a
time and there are (M + 1) particles in the locations zo, ..., zy at time 0, the total number
of particles at time T is stochastically dominated by 91 + -+ + Dras41)/r], Where ;s are
i.i.d. with common distribution G, r. Now N(z,T) > k implies that the number of particles
at time T is at least M + 1 + k, as at least one new particle are born at each birth time. So,
using (2.43)

[(M+1)/r]
Po,p(N(zT)>k) < Pl > 2i>M+1+k
=1
[(M+1)/r]P (D> (M+1+k)/[(M+1)/r])
_ RM + 1)/7,‘| (1 . efrT)(M""l""k)/(rf(M‘*‘l)/T-‘) .

IN

Lemma 2.9. Let Rf,;T.m > 0, be the ftT—stoppmg times described in Section 2.3 and N (z,T)

be as in (2.17) for z = (20,...,2m). Then for o specified in (2.35) and large enough n,

logn
P : RZ,T _ RZ,T zQ — 1 )
Gilélén G An <1§m§HJ\171(Izl,T)+1 " m=1 < 370 4 an )2 o(1)
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Proof. It is easy to see that if Z has exponential distribution with mean 1, then R%T Rf,’zl
stochastically dominates Z/[M + 14 (m — 1)r] for any m > 1. This observation together with
the inequality P(Z < z) =1 — e * < z and Lemma 2.8 imply that the reqired probability is

Z < ologn
M+1+(m—=1)r = X/(1+\)

k
< P (VT 20+ 3 P, (

k
logn
< Cos(M)exp(—cos(M,T)k) + Y (M +1+(m 1)7“)#—%)2
m=1 " "
ologn

< Oos(M) exp(—exs(M,T)R) + (M + Dk -k /2] Py

for any k > 1. Replacing k by [[ologn/(A3 /(1 + \,)?)] /3] we get the desired bound. M

Lemma 2.10. Iflogn\, < n/(logn)" for some n > 0. Then

ologn

/\%/(14‘)\71)2} < R=T for some m < N(Z,T)) = o(1).

sup FPa, A, <max {Tm, Rf,’gl +
Gn€Gn

Proof. Observe that for any m > 1,
z, T 3 z, T
Pa, (Tm V(R%" 4 o(1 4+ M\y)*logn/A2) < R% |]: >
m 1

< Pg, \, (Rf,;T > R:ﬁl + o(1 + \,)?logn /A2 and 3i,j € J(R 1t en), i # 7,

T
Foor |-
R

Now the condition for ¢ and j in the above expression implies that i, j € J (R 1) and X} i £ X J

for all s € [anqil, anTl + €,]. So the above is at most

such that inf (X X7) < wp
R ten<s<RR"

Z P (X2 # X9 s € R RED, + 0] and d(XE X7) < w
ij€J(REE ) i)

for some s € [Rm 1+ en,T]‘ fng ) . (2.44)
m—1

Noting that conditional on ]:gsz ,

m—1

i 7 4 ay _ i
<)( ZT1+-’)(Rm 1+S> __S;’ where y = <)( ;TI’J(R 1

m—

)VseT R=T. (2.45)

we can use (2) of Proposition 5.5 to bound each of the summands in (2.44) by o(1). Hence the
sum in (2.44) is < ]J(ery’ljll)\Qo(l) < (M +1+47rm)?0(1). So considering whether N(z,T) > k
or no, the probability of interest is

k
< Pg,in(N(z,T) > k) + Z (M + 14 rm)?o(1) = Pg, x+n(N(2,T) > k) + C(M)k?o(1).

m=1

Using Lemma 2.8 and replacing k by a quantity 6,, so that 6,, — oo and 6,,0(1) — 0 as n — o
we get the desired result. |

taubdstepl
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Lemma 2.11. Iflogn < A\, < n/(logn)" for some n > 0, then
sup Pg, .\, ({O'm < R7Zv£1 + €y, for some m < N(Z,T)} N{7m > R%TYm < N(z,T)}) = o(1).

Gn€Gn

Proof. Note that on the event {7,,, > Rﬁf for all 1 <m’ < m},
. . W, Vi,jedJ (RfﬁT—> and i # j
d<XIz%z’T’X]z’T) = z,T z,T z,T
m R wn — 1 \ﬁeJ(R,ﬁ —)\{Mm}andeJ(Rn&)\J<Rn;_)

In view of (2.45), (1) of Proposition 5.5, and the bound |J(RG =) < M +1+ (m —1), w
have

Pg, A, ({0m+1 < Rf,:LT + en} N {Tm/ > RffVl <m < m}) <2[(M +1+ (m— 1))2}0(1).
Finally imitating the argument which concludes :emma 2.10 we get the desired result. |

Lemma 2.12. Iflogn < A\, < n/(logn)" for some n > 0, then

logn
P < N(z,T i 2T _pel €081 L) _ )
Gilé%n Gn,An <{I<6 > (Z, )} N {1Sm§%1(27T)+1 Rm Rmfl > )\%/(1 + )\n)Z }) 0( )

Proof. First note that if R%’ > Ril;{l +ologn(1+X,)?/A3 and k = m, then ijT & Lo(Gp)
for some i € J(R% =) ¢ J(R“L,). For one such i € J(R%' —) and m < N(z,T) if we let

m—1

y= X;z,T , then using the couplings in (2.45) and Proposition 2.4

m—1

Pan ({ X0 @ Lo(Ga) } 0 {RET > REL, + ologn(1 4+ A)?/X3 } )

<Pooan | s (S8 S2) > (1/10)log, n | + Pa,a, ({a (S8, (Lo(Gn))?)
RET <s<RyT "
is at most (1/10)log,_;n} N {Rf;LT > Rf,fil + ologn(1+ )\n)z/)\i}> . (2.46)

Using (1b) of Proposition 2.4 the first term in the right hand side of (2.46) is < Cg_4(T)n’3/10.
To bound the other term recall that

s d ns
S;:,’L%l+8 = Si%S/(l—l-)\n)z’ so that dTV(E(S;f,;%1+s)’ U[n}) < l/nQVS > ologn(1l+ )\71)2//\?Z

by the choice of ¢ in (2.35). Also by the definition of Lo(Grn), Up({v @ d(v, (Lo(Gr))¢) <
(1/10)log,_; n}) < C3,n*> - n'/19/n. This bound and the TV bound in the last display
imply that the second term in the right hand side of (2.46) is o(1). Once again imitating the
argument which concludes Lemma 2.10 we get the desired result. |

Proof of Lemma 2.6. Tt is easy to see that the conditional distribution of R%™ — Rfr’zl -5

given {RfﬁT - Ri’il > s} stochastically dominates an exponential random variable with mean
> (M +1+7(m — 1))~ This observation and the inequality 1 — e=® < z imply

Pg,x, (T € [ByT Ry + €n))
= Poo, (RaT - Rl <T— R |RST — RED > T REL — ) < (M 41+ rm)en,

kappa break
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Using the above estimate and considering whether N(z,T) > k or not,

PG'ru)\n (T € U]-\L(IZ’T)

(2

[R%T, R%T + en])

k
< Pa,a(N(2,T) > k) + Y (M +1+rm)en < Pa, »,(N(2,T) > k) + C(M)ke,. (2.47)

m=1
Replacing k by €, /3 in the above estimate, using Lemma 2.8, and then combining with
Lemma 2.9, 2.10, 2.11 and 2.12 we get the desired result. |
3. ODE FOR THE DENSITY OF THE TWO OPINIONS
Lemma 3.1. u € C([0,00)) satisfies u}j = E3u(1 — ug)(1 — 2uz) and ug = p € (0,1) if and
only if for any [ > 0 it satisfies

t
= / (e~ [(es/Dun(1 — up)(1 — 2up) + up] dh + pe". (3.1)
0
The common solutio is given by

14+ (1+ c)et) ] irpe 1/2.1)
if p=20,1,1/2, where c(p) = |p—1/2|_2—1, (3.2)
3 [1 -1+ C(p)ew)*l/ﬂ ifpe(1/2,1)

Proof. If u; satisfies (?7), then changing the variable w =t — h

SN

Ut =

t
up = e_[t/ (" [(83 /1)t (1 — ) (1 — 2uy) + uy] dw + pe™™, which implies (3.3)
0

up=e " {[e[t {(83/Due(1 —ug)(1 — 2uy) + ut}} —M[us — pe™"] — ple™ = t3uy (1 — ug) (1 — 2uy)

and uy = p. Conversely if u; satisfies the ODE uj = €3us(1 — uy)(1 — 2u¢) and uy = p, then
integrating by parts it is easy to verify that (3.3) holds, and hence (3.1) is satisfied. The
solution to the ODE is obtained by the method of partial fractions. |

Theorem 3.1. Suppose logn < A\, < n/(logn)" for some constant n > 0 and §{\" be the
rescaled latent voter model on the random graph G, having distribution P such that fé‘” satisfies
(1/n) X vem) Penin (& (v) = 0) = p € (0,1). Letu(-) be the solution (as in (3.2)) of the ODE

W/ (t) = tsu(t) (1 - u(t) (L - 2u(t)), u(0) =p. (3.4)

where 3 = t3(r) is the probability that three random walks starting from three neighboring
vertices of the infinite homogeneous r-tree never hit each other. Then for any fited 0 < T < 0o
and Gy, as in (2.4)

1
sup |—

- E Pa, x. (fS”(z) = O) —u(s)| = 0 as n — oo uniformly in Gy, € Gp.
0<s<T
== z€[n]

Proof. For z € [n] and the events EZ, F? defined in (2.18) and (2.42) let

§7 78 S

1
BF} = B: 0 F2ul () = Po, o, (£7(2) =0), af = — 3~ ulr(2).

break up2

usol
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By Lemma 2.3 and 2.6 supg« <7 SUPgein] £6n,1, (EF5) = 0(1). We also need the ingredients
Pi = Zant g, (1Tl =), 1 <@ <7+ 1, where Egne 5, is the law on Uj_; II; (3.5)

as described in Section 2.5, and recall from (2.22) that

¢, = lim p]' = Ex (|| = i) exists and ¢; =
n—00

{>0 for i =1,2,3

=0 otherwise

Now in view of (2.16) and Lemma 2.7 if EF? occurs, then

ologn
AL/ (14 An)?
()Co(g) = &) (X2#7) for all j € J(s) imply & (2) = Ci(i) for all i € J(s —t),t € [0, 5],
and in particular £ (z) = (0). (3.7)

(a)R}® > 6, = (b) all branching sites of X;7°,t € [0, 5], are in Lo(Gh,)

Thinning of Poisson process suggest that if R is the first time when new particles are added
in X**, then 9 has exponential distribution with rate (1 — p?)A2/(1 4 Ap)2.

If EF? occurs and R < s, then R must be in [d,, s] by (a) of (3.7), and k new particle will
be born at time 2R with probability p}., ; /(1 —p7) (defined in (3.5)). So using the update rule

in (2.26) and the fact that different particles in X#5 move independently,

P, ({ggn(z> - o} NEF? 0 {R € [0, s]}’ 9%)

; i“,f Pon ({Gnl0) =0 and &n(6) = 0,i = 1,... .k} N EFY)

n>Yv>

+ Pa, ({és_m(()) =1 and fs_m(i) = 0 for at least onei =1, .. .,k} N EF;)}

= 1{5nsmss}i 1pﬁ+p1 [ G A ({Cs %x(0) = O}WEFSZ)
k=1 1
k
HPGn,)\n ({ésff)‘i(i) = 0} N EF;) + Pg, ({6879‘{(0) = 1} N EFf) .
=1
{1 — ﬁPGn,)\n ({fsfm(i) = 1} N EFf)}
=1

The o(1) term arises because of ignoring some power of Pg,, , (EFZ) which would appear in
the last step above. On the event EF? N {R < s}, {m(i) = (X Z’S’Z) by (3.7). Also

the branching site X;S 04 Sz and the locations of the new particles X;S L 0!, described in
(1c) of Proposition 2.4. By our choice of ¢ in (2.35), dTV(ﬁ(S’gg), Up) < 1/n* on {R > 6,}.
Combining the last three observations and using (1c¢) of Proposition 2.4

‘PGTW ({&m =0} nEF?) — afny| =

’PGM (g (Sm)—O)—u

+o(1). (3.8)

‘P(;n,xn ({f?fm(gga) = 0} N EF:) — "y,

(1) < dry (5 (sm) ,U[n]> +o(1) = o(1)

EFgoodevent

fRbreakup
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on the event {{R > §,,}. Similarly forany i € {1,...,r}, ‘Pgm)\n ({ _ = } N EF;) — ﬂG”m =
o(1) on the event {R > d,,}. Hence we can rewrite the right hand 81de of (3.8) to have

P, ({€7(2) = 0} NEFZ N {R € [0n, 5]} N)
n k+1 k
= L{s,<n<s) 2okt fi;% [( sG"m> + (1 - ag"ﬁﬁ) {1 - <1 - ﬂsG"m) H +o(1). (3.9)

On the other hand if E'F; occurs and R > s, then using independence of 56\" and the
ingredients for the graphical representation for the interval (0, s],

P ({627(2) = 0} N EFZ 0 {9 > s}) = P (X250) = 0)Pg, , (NEFIN{R > 5}).

Recalling that dpy (L(X7*0), Up) < 1/n? for all t > 6, (a) of (3.7) and the property of ;"
in our hypothesis suggest that the above is

(p+ 0(1)) Pa, n, (EFZ 0 {% > s}) = pexp(—(1 — pi)s) + o(1). (3.10)
Putting (3.6), (3.9) and (3.10) together, using the distribution of R and noting that ¢, — 0,

(2 = [ =) exn(=(1 =) 3 R [(a, )

k=1 P

+ (= afr {1 = (= af",)F}] ds’ + pexp(—(1—p")s) + o(1)

5 / 4 ¢ 3
_ 1— —(1—-t1)s 2 —Gn ) 3 _Gn ,
- /0 ( {31)6 1_ El Ug s 1—# <usfs )

(1 —alr ) <2usG”s, — (usG"S,>2> H ds' + pe~ (17403 (1),

As the o(1) term above doesn’t depend on z, we can replace uS"(z) by @S in the above
equality. Since £ + 2+ €3 = 1, we write (1 —#3/(1 —#;)) in place of €2/(1 — ;) and do a little
arithmetic to conclude

s e
G :/O (1— ty)e-(1-t)s [1 —ge aSe, (1-aly ) (1-2u8n, ) +af_"s,] ds’

+ pef(lfh)s +o(1).

Now if u; satisfies (3.4), then Lemma 3.1 suggests that u; also satisfies

Us = / (1 - El)ei(lih)y |:1 ng Us—s! (1 - us—s’) (1 - 2“5—8’) + us—sl:| ds’ +p67(17€1)8‘
0 —u

Combining last two displays and noting that the Lipschitz constant for the polynomial (¢3/(1—

£1))u(l —u)(1 — 2u) 4+ w on the interval [0,1] is 1 + ¢3/(1 — ¢1),

}ﬁf"—us\§0(1)+<1+1ih>/s

Using standard argument (e.g.,Lemma 3.3 in [1]) the above implies

G, = o] (1= t)e” 07

[e.e]
‘ﬂf” - u8’ < o(1) ZF*k(s) = o(1)e**, where

F** is k' convolution of F(s) = (1 — & + 33)6—(1—51)6’1{90}_ Finally noting that the o(1)
term works for any s € [0,7], the desired result follows. |
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4. LOWER BOUND FOR CONSENSUS TIME

In order to infer about the consensus time we need to estimate the correlation among the
states of different vertices. In this section, our goal is to establish the fact that dual processes
starting from distant vertices do not collide with high probability, so that their states are
asymptotically uncorrelated. We call the particles in the dual process X¥7 members of a
y-family.

Proposition 4.1. Let G, € G, and logn < A, < n/(logn)" for some n > 0. There is a
constant wy > 0 (as in Proposition 5.5) such that if 1 < K < K" and y; € [n],i € [K'], satisfy
d(yi,yj) > (1/wo)log,_1(n/Ay) foralli € [K],j € [K'] and i # j, then for any fized a,T > 0,

Pg, x, (ﬂz‘e[K] Uje[K),j#i {ys-family comes within distance a of y;-family before time T })
< ey (n/)\n)_ﬁp”]-]/wo for some positive constants cq1 = c41(K,a), ps1 = ps1(n,T).

Proof. We prove the result for @ = 0 only, as the other cases are similar. For notational
convenience, we also assume without loss of generality that y; = 1.
Let ,, p be as in Proposition 5.5 and w, = (1/wo) log,_;(n/\,). We write K’ for [K']\ [K]

and associate a forest F on the node set [K]U{K'} with the coalescence structure of XLKI], 0<
t < T as follows. Whenever i-family collides with j-family for some 1 <i < j < K or j = K/,
we put an oriented edge j — ¢ in F, merge the two families and declare ¢ to be the family
head. A node with no outgoing edge is the root of the component containing it. The event of
our interest implies that number of components in F is at most K/2+ 1. We will present the
proof in two steps.

Step 1. First we will show that for any distinct f;s

Paoxa(ft,. s fk=1inF) < (r— 1)~Feen/12 for some p > 0 (4.1)
and for large enough n. For s = (s1,...,s;) let H(s) denotes the joint distribution of the

hitting times of the families with family heads 1, fi,..., fx and let w = (wy, ..., wy) € [n]*
be the locations of the coalescence. Also let f = (fi,...,fx) be the permutation of (fi,..., fx)
corresponding to the order in which coalescence occurs and I; € Jli(s;—),m; € J(s;),1 <
j < k, be the (random) indices of the members of the two families respectively which coalesce

at time s;. Then

) T
Pounfufoefo~1mB) < S [ H(ds) Y o, (X5 =,
fePerm(f) 0<s1 << <T we[n]k
= X2 and XD £ XV i f £ s < sj) . (4.2)

We write Dj = D(f;,w,/6), divide [n]* into 2* groups depending on whether w; € D; or not
and use independence until collision’ property of the dual processes to bound the inner sum
in the last display by

k
1,T,m; T
3 3 P, (m§:1 {XS]. m_ wj}) I Peon (Xi;, i wj). (4.3)
be{0,1}F wiw;€(1-b;)D;+b; DS J=1

If wj € DY, then Lemma 2.8 and the second assertion of (1) of Proposition 5.5 imply that for
a suitable choice of ¢

Poun (XU = ;) < Pa, o, (179 (55)] > ) + cwn( = 1)/ < — 1) 7P/,

collidebd3

collidebdl
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Using this bound, writing |b| = Zj bj and summing over all w; € D} such that b; = 1 the
inner sum in (4.3) is

— il 1,T,m;
<(r—-1) [blpwn/8 Z H Pa, (Xi; 7= wj) Pg, (ﬂj:bj:() {XS]. T = wj})
w;€D;:6;=0 j:b;=0

(4.4)
Now we want to estimate the last term of (4.4). It is easy to see that the particle X ;]?T’mj
originates from {1,f1,...,fj—1}. d(f;,fi),d(f;j,1) > wy, for all i < j. For any choice of vertices
wj € Dj,j € {j:b;j =0}, and indices m;, j € {j : bj = 0}, Xslj?T’mj = wj implies either starting
above wy, /3 the distance between f; and the particle at X SIJTT’mj reduces to wy, /6 (when the
particle is born outside D(f;,wy/3)), or starting above 2wy, /3 the distance between f; and the

parent (with index m; for some i < j) of the particle at X s ;T’mj reduces to wy, /3. Hence the

Markov property of Pg, », and repeated application of the second assertion of Proposition 5.5
imply that for any (w; € D; : b; = 0), Pg, ., (ﬁj:bj:o {X;;T’mj = wj}) < (r—l)*(k*|b|)p“’"/3.
Combining this with the fact that the number of possible values of m; is < j - cw,. on the

event {\Jiﬁ] < cwp } and using Lemma 2.8, the last term of (4.4) is

1,T,m; .
PG, (mj5bj:0 {ij "= wj}) < Pg,a, <U§:1 {Uf](Sj—N > Cwn})

+ H (jewn ) (r — 1)—(k—|b|)Pwn/3 <(r— 1)—(k—|b|)pwn/8‘

j:bj=0
for a suitable choice of c¢. Using this bound the expression in (4.4) is < (r — 1)~krwn/8,
Therefore, considering all possible choices of b in (4.3) and § in (4.2) we get
Paynn(fis for o fo— Lin F ) < kI2F(r — 1) 7Fewn/8 < (p — ) hewn/12 (4.5)

for large enough n.

Step 2. The bound in (4.1) and the ‘independence until coalescence’ property of the dual
processes imply that if 4 and j are either from different components or from same component
but have equal oriented distance from the root, then

Po, o, ({it, i =i inF YN {j1,..., 51— jinF }) < (r— 1)~ ktDpwn/12, (4.6)

Also if fi = fo — -+ — fr, — 1 is an oriented path in F, then we can interchange the roles
of the indices 1 and f; to have f; — 1,..., fr — 1 in the new labeling. Thus

P, (fi =1, fr = 1in F) < (r — 1) Feen/12, (4.7)

Now note that if the tree component containing 1 is §, then either there are at least
[\/I§] — 1] nodes in § at equal distance from the root or there is an oriented path in § of
length at least [/|§| — 1]. So using the bounds in (4.6) and (4.7)

Pg, A, (S is the component containing 1) < 2(r —1)”V [§1=1pwn /12,
The above estimate together with (4.6) and the inequality >, \/z; > />, x; implies

Pg, 2, (81, ..,81 are the tree components of IF)
< 2(r — 1)_ZiL:1 VISil=1lpwn /12 < o(p — 1)=VEFI=Lown/12 " which in turn implies

Pg, x, (F has at most K/2 + 1 components) < ¢(K)(r — 1)~V E+HD=(K/24HDpwon /12

collidebd2

collidebd4

collidebdb
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where ¢(K) is twice the number of forests on the node set [K] U {K'} with at most K/2 + 1
components. This completes the proof. |

Next we use the estimate in Proposition 4.1 to obtain the following large deviation estimate
for the number of individuals with opinion 0 at time 7.

Lemma 4.2. Let logn < A, < n/(logn)" for some n >0 and & = {v € [n] : £ (v) = 0}.
Then for any k > 1 and 6 > 0 there are constants Cy2(k,d), ps2(n,T) so that for large enough
n,

Pg, ( sup ‘|€?”| — Eg, €07

0<s<T

> (5n) < C’442(n/)\n)7‘/§p"-2

Proof. Let wy, be as in the proof of Proposition 4.1. For Z C [n], we say that i € Z is a ‘good
element’ of 7 if min;zye7 d(7,4") is not less than wy,, otherwise we call it a ‘bad element’ for
Z. Define

[ ]Qk

W= {(i1,...,i2) € [n]*" : at least k many indices of {i1,..., 79} are good for it}.

Now let Y, s be the indicator of the event {{,"(v) = 0} minus its mean under Pg,, ), and

Up;s = Zve[n] Y, s. We estimate the even moments of U,,. Noting that U = Zihm’me[n] Yi s

and |V, 5| <1,
EGn)\n U’r%,k.:s S |WC’ + Z EGnyAn [}/;«'175 T }/;'2]678] ° (48)

01,e,i0, EW

Y

12k S

To bound |W¢| note that |W¢| = Z VW], where Wy := {(i1, ..., o) : {i1,..., ik} has | good indices}.

To bound || observe that [ many good indices can be chosen in at most n! ways and 2k —
bad indices can be chosen in at most [n - r(r — 1)“»~1](2=0/2 ways, as the worst situation is
to have (2k —1)/2 pairs of indices such that the distance between two vertices of any pair is at
most wy,. Since the number of permutations of the elements in {41, ..., 49} is at most (2k)!,

??‘
H

|WC‘ < (2k)' n+(2k—l)(1+1/w0)/2 <k- (2k)!nk(3/2+1/2w0)‘ (49)
l

I
=)

The next step is to bound the summands in (4.8) for (i1, ..., i9,) € W. Fori= (i1,... i) €
W we assume (without loss of generality) that i1, ..., are good elements for {i,..., i},
write 1 := {iky1,...,092c} and i3 < --- < 4 < i’. We associate independent copies of the
graphical representation to i1,...,4,1. Based on them we construct Xl o X T XT
so that their laws are as described in Section 2.3. Let ffih s be the analogue of Yj, 5 associated
with the graphical representation for 4;. NOW we construct XV as follows. Initially we have
k+1 families with family heads i1, ..., %x,i’. Members of each family follow the graphical rep-
resentation corresponding to the famlly head, but whenever two members with family heads
j < 7' come within distance 3, we merge the two families and declare j to be the new family
head. By the above construction, Y, s = ~7;l73 if the members in 4;-family do not come within
distance 3 of some member from other families. Now if we let

¢; := {i;-family comes within distance 3 of some other family before time s}, & := ﬂkzl ¢,

then it is easy to see that there is a random variable 9R;, which is independent of Y;
that Y5, 5---Y;

12k S

;.59 SO
YZ R 1@6 Yi, s 1s also independent of the events &;,1 <[ < k, and

] bad summands 1t
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Eg, 2, Yi; s = 0. Hence
By Yis Yig slee] = ZEGM [ Yijs 0 1ec.\u{’fef} =0
S\Ui=

The above estimate together with the fact ]YZ s| <1 implies
|EGn7>\n Dfil,s . Z% s” < PGn /\n(Qf) for all (il, R ,igk) e W. (4.10)
Combining (4.8) (4.9) and (4.10) and using Proposition 4.1 to estimate Pg,, », (&),

0<s<T

The above estimate along with Markov inequality

> 5n> < (5n)_2kEGnAn < sup Uﬁi)
0<s<T

gives the desired result for Cyo = 2¢4 1072k and P12 = pa.1/wo. [ |

PG7L7>\’IL ( Sup ‘ |£§\n| - EGnvAn |£§‘7L|
0<s<T

Theorem 4.1. Suppose logn < A, < n/(logn)" for some n > 0. Let {& : t > 0} be the
latent voter model with parameter \, on the random r-reqular graph having distribution P
such that & has product measure on {0,1}™ with P(&(v) = 0) = p € (0,1). There is a
good set of graphs G, with I@’(Gn € Gn) — 1 so that if n is large and G,, € Gy, then for any
5 €(0,1/2),b < o0 and for some constants T =T (6,p),T" =T"(0),C4s.1(b,0) > 0,

Pa,a, <71L €| € [1/2—0,1/2+ 0] for some s € NI, A\, T + n(n/)\n)bT"]> < Cui(n/A,)7°

Proof. Let &M = €x,t> Gn beasin (2.4) and u(-) be as in (3.2) with u(0) = p and choose T" large
enough so that |u(T) —1/2| < §/16. Then we invoke Theorem 3.1 to have |(1/n)Eg, x,&)" —
(1/2)] < 6/8 for large enough n. Combining the above estimate with Lemma 4.2

1
Pe, A, ( -

_ ‘5;\}
for any k£ € N and large enough n. Now let ©g =T and for i > 1,

e {1/2-6/2,1/2+ 5/2}} ,

> 5/4> < Cuo(nfAg)VEei2(T) (4.11)

1
II, := inf {t >0;_1: E ’515”

©; := inf {t > 11, - 1 )ﬁt"
n

€{1/2—5/4,1/2+6/4,1/2 — 5,1/2 +5}} .

Also let @(-) be a solution of the ODE in (3.1) with initial value @(0) € {1/2 —§/2,1/2 +
6/2}, and T, T" be such that |a(T") — 1/2] = §/16 and |a(T") — 1/2| = 15§/32. A little
algebra shows that II; + 7" < ©; and (1/n)]£gﬂ e {1/2 —6/4,1/2 4+ §/4} if Hfﬂ’z‘ﬂ\/n -
a(s)] < 36/16 for all s € [0,7']. Now using Markov property of Pg, », and Theorem 3.1,
SUPg<s<77 |(1/n)EGn7>\n£f‘ﬁ+s —u(s)| < 6/16 for large enough n, and applying Lemma 4.2

Po,p, (O3 ST+ 1" o (Un)l€d:| € {1/2 - 3/4,1/2+6/4})

<PG, M <‘ |£H 4l — ()| > 35/16 for some s € [0,T’]> < 04.2(71/)\”)—\/%;;4,2(771’) (4.12)

for any k£ € N.

productbd

consensusbdil
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Noting that if |€)|/n & {1/2 — §,1/2 + 6} for some s € [T, T + T"(n/ ambday,)’], then
either the event of (4.11) occurs, or the event in the left hand side of (4.12) occurs for some
i < (n/A\,)°. So if we choose k and Cy 1 so that the estimates in (4.11) and (4.12) are at most
Cy1n7 /2 and Cy1n~2?/2 respectively, the proof is complete by taking union bound of the
above events. |

5. RANDOM WALK ESTIMATES

In this section, we study some hitting times involving two random walks on G, 1(1/5)10g,_, n]-
We begin with some simple random walks on Z,, which will be useful in what follows.

Lemma 5.1. Suppose Ay, Ao, ... are i.i.d. with P(A; = —1)=1/r=1—P(A1 =1). There

is a function ay(r,vy) > 1, which is nonincreasing in the second argument, such that if k > o,

then
km
P <Z A; < m/7> < (r—1)"m/,

=11

Proof. (1) If we let Ia(z) := supgeg{fz — log(Fe?>1)} be the large deviation rate function,
then Ia((r—2)/r) = 0,Ia(0) > 0 and Ia(+) is a decreasing continuous function on [0, (r—2)/r],
as EAy = (r —2)/r. Let

r
V(r—=2)
For any k > a3 we use the standard large deviation argument to get the required estimate.
As In(1/~k) and 1/+vk are increasing and decreasing functions of «, a; is decreasing in .
(2) Tt follows by using the optional stopping theorem for the martingale (r — 1)~ 212 and
the stopping time T_Al A Tl,A |

aq(r,y) == inf{k > 1 :log(r — 1)/vk < In(1/7k)} so that < ay < oo.

We will now analyze some hitting times of a simple random walk on a certain finite graph.
Recall the definitions in (2.2) and (2.3), and assume that v € Li(G,). Also let {S,, =
(S,S2) : m > 0} be the standard discrete time coalescing random walk system of two
particles, where at each step one of the particles is chosen at random and is allowed to jump
to a uniform neighbor until they coalesce, and after coalescence they say put with probability
1/2 and jump to an uniform neighbor otherwise. Note that for i = 1,2, {S! :m > 0} is a
lazy simple random walk. Here we will study the associated hitting times

T':=inf{m >0:d(v,S.) = [(1/5)log,_; n]}, T := inf{m > 0:d(S},,52) = [w]} for w > 0.

5.1

For notational convenience we say that

v is a midpoint of (uy,us) if (1) d(u1,v) = |d(u1,u2)/2] and (ii) d(ug,v) = [d(u1, u2)/2].
52
Proposition 5.2. Let {Sy, : m > 0} be the random walk (as described above) such that Sg
v € L1(Gy) is a midpoint of Sg in the sense of (5.2).
(1) For any v,a,b > 0 there is a constant o = a(r,v,a,b) > 0 such that if K and {v,}
satisfy (i) K > « (ii) v, — 00 as n — oo (iii) d(S}, S2) = [Yvn] for some ¥ > b and
[¥/2 + Klv, < (1/5)log,_ n, then

P(Ttysays, < Ty A[Kva]) = 1= 6(r = 1)7/7 — (r = 1)} 700 — (r — 1) 7@,
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(2) For any v > 0 there is a constant & = &(r,7y) > 2 such that if K and {v,} satisfy
(i) K > & (i) v, — 00 as n — oo and (iii) (3K + 1/v)v, < (2/5)log,_1n, and (iv)
(S5, 58) < (K +1/y)vn, then
P ({d (Sticon1s Sticunt) < va/7} 1{To > [Kva1}) <700 = 1) 7/,
Proof of Proposition 5.2 for v € L1(Gy) \ Lo(Gn). (1) v € Lo(Gy,) implies that G, [(1/5)10g, _, n]
is a finite r-tree. Let
a(r,y,a,b) = ai(r,1/a), where ; is defined in Lemma 5.1, and

T = T(ﬁ—b)vn VAN T('ﬁ+b)’un A ’VKUn‘|.

We begin by estimating the probability P(T' = [Kuv,]). Observe that until time Ty A T A
T2, {d(S},,S%) : m > 0} is a random walk on Zy with iid. increments having common
distribution same as that of A of Lemma 5.1. Also T'AT? > Ku,, because for any m < Ku,,

d(v, 5% ) < d(v,8) + Kv, < 9v,/2 + Kv, < (1/5)log,_;n by (iii) and (iv).

So T' = [Kwv,] implies that the increment of the above random walk after [ Kv,,] many steps
is at most av,. Since K > «a1(r,1/a) by (i), Lemma 5.1 implies

P(T=[Kv,)<P| > Aj<av, | <(r—1)"n (5.3)

Next we need to bound P(T = T(ﬂfb)vn)‘ Applying the optional stopping theorem for the
stopping time T and the martingale Mm/\[KUﬂ/\Tg? where M, := (r — 1)~ %m:5%)
(r—1)""" = EMy = EMy > (r—1)""""p(T =Ty 4),)
+(r — )"~ P(T = Ty,

Rearranging the above inequality,

_ _ r—1 —dvp _ r—1 —(¥+a)vn
P =Tlom,) < 1oy < =D (54)
Combining (5.3) and (5.4) avd noting that T(ﬂ—i—a)vn > T (9=byv, N [Kvy,] implies either T =
T(9—byo, or T'= [Kvy], the proof of (1) is complete.
(2) Note that d(v, S}),d(v, S2) < d(S§, S2)/2 which is in turn < (1/5)log,_; n — Kv,, by our
hypothesis. This ensures that 7' AT? > Kwv,,. So using similar argument which leads to (5.3)
and letting &(r,~y) := ay1(r, ), where 1 is defined in Lemma 5.1, we have

[Kvn]
a a Un, = Un —Un,
=1

For v € L1(Gy) \ Lo(Gy) we need some additional machinery to prove Proposition 5.2. Let

L, be the subset of D(v, [(1/5)log,_; n]) consisting of the vertices in the loop, and (5.5)
py(u) € L, be the vertex in the loop nearest to u € D(v, [(1/5)log,_;n]).

We need to study {d(an, p(S%))) : m > 0}. Note that until S, hits the boundary of the graph

Go,1(1/5)1og, _,n]> 1d(Sp,,p(Sh,)) = m > 0} is a lazy asymmetric random walk on Z, with a
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little different behavior when it hits 0. Let {S’m : m > 0} be a discrete time asymmetric
random walk on Z, having step distribution same as that of d(S},,p(S},))), i.e.,
P(Spi1=0[S, =0)=1/2+2/2r =1 — P(S,,11 = 1|5, = 0)
1/2 ifk =k
and for k > 1, P(Spmi1 =K|Sm =4k)=1<1/2r ifk=k-1 (5.6)
(r—1)/2r UK =k+1
The following facts about this random walk will be required in what follows.

Lemma 5.3. Let {S'm :m > 0} be a discrete time simple random walk with transitions as in
(5.6), and T = inf{m > 0: S, = 0}.
(1) Then P(Y < o0|Sp=1) =1/(r —1).
(2) Moreover, if Y1, Yo, ... are iid with common distribution given by P(T =) = P(T =
T < 00,80 = 1), then for any v > 0 there is a constant as(r,7y) > 2r/y(r — 2) such
that
P(Yi+---+ ’i“k/7 > ag(r,y)k) < (r—1)7*7,

Proof. Let oy (0) = E[exp(@’fl{y@o}\go = 1)]. Conditioning on S; and solving the resulting
quadratic equation and ignoring the impossible root,

—ef/2 — —e —(r—1)e2/r
o () = ! /2 Wl@—i@jr (r = 1)e20/r? for 0 <log(r/[r/2+ Vr —1]).

Clearly P(T < oo|Sp = 1) = limgrgpr(f) = 1/(r — 1). Hence if og(0) = EeT1, then

e1(0) = (r — 1)pr(0). Also E(T1) = ¢z (0) = 2r/(r — 2). So if we let

1
as(r,y) = S inf{x : I5(x) > log(r — 1)}, where Iy (z) := zuI[Rg {6z —log p(0)}
€

is the large deviation rate function for Y1, then as(r,v) > 2r/y(r — 2) as I (2r/(r — 2)) = 0.
For this choice of ag, (2) follows by using standard large deviation argument. |

Now we use Lemma 5.3 to show that the behavior of the random walk S’m at 0 does not
slow it down too much.

Lemma 5.4. Let {S,, : m > 0} be a discrete time simple random walk with transitions

as in (5.6). For any v > 0 there is a constant ag(r,vy) > 4r/~v(r — 2) such that P(S,, =
0 for some m > az(r,y)L) < 3(r — 1)~L/7.

Proof. Suppose Sy = k. Let Y;,1 < i < k, be the time required for the random walk to come
to k —i from k —i+ 1. Also let W;(orYy;),j > 1, be the time it takes to return to 1 (or
0) after its j¥ (or (j + 1)) visit to 1 (or 1). It is easy to check that (i) ¥;s are iid and the
common distribution is geometric with success probability (r — 2)/2r, (ii) Y;s are i.i.d. and
the common distribution is same as that of YT|{Sy = 1} of Lemma 5.3, and (iii) ¥;s and Y;s
are independent. Now let

s—1 S
¢:=min{i >1:7Y; = oo} so that S, > 1 for all m > ZTi+Z\I]i-
i=1 i=1
To estimate the above sum first note that

P(¢>L/y) < (r—1)7" (5.7)
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by (1) of Lemma ??. On the other hand, if ¢ < L/, then (2) of Lemma 5.3 with as = asa(r, )
and the independence of T;s suggest that

s—1 L/~ i—1
P (ZTi > agl,¢ < L/fy) = > P T >aL|T; <oVlj<i-1]| P(s=1i)
i=1 i=2 j=1
L/~
< P DT>l YTy <ooVj<L/y| < (r—1)75.8)
j=2

In addition, if we let g (0) := Ee?Y' < oo for § < log(2r/(r +2)) and
1
ay(r,y) = S inf{x : I'y(x) > log(r — 1)}, where Iy(z) := sup {6z — log oy (0)}
0eR

is the large deviation rate function for ¥;s, then ay(r,v) > 2r/y(r —2), as Iy (2r/(r—2)) = 0.
Once again using standard large deviation argument,

< L/~
P (Z U, > oyl < L/y) <P U>al | <(r—1)700 (5.9)
=1 i=1

Combining (5.7), (5.8) and (5.9), and taking a3 := g + a4, the desired result follows. [ |
Proof of Proposition 5.2 for v € L1(Gy) \ Lo(Gy). (1) Let a(r,v,a,b) := 2a1(r,2/(a + b)) +

asz(r,7), where a1 and a3 are as in Lemma 5.1 and 5.4 respectively, and T := T(,g_b)vn A
T, (94+b)v, N [KUn]. Recalling the observation made just before (5.6) and noting that TYAT? >

Kwv, (as argued in the display before (5.3)),
if H, :=U% {S! L, for some m > asz(r,y)v,}, then P (H,) < 6(r —1)"""/7.  (5.10)
by Lemma 5.4. Next we estimate P({T = Kv,} N Hf). On the event HE if Ty > a3vy, then
{d(S},,52,) : azvp <m < Ty A [Kwy]} is a random walk on Z with ii.d. increments having
common distribution same as that of A; of Lemma 5.1, as T' A T? > Kuv,,. So T = [Kv,,]
implies that the increment of the above random walk after (K — a3)v,, many steps is at most
(a 4 b)v,. Since (K — a3)/2 = ai(r,2/(a + b)) by our choice, we can use Lemma 5.1 with
m = 2v,, to have
(K—as(ry))vn
P{T = Kv,} NHE) < P Yo A< (atbuy | < (r—1T@E (511)
i=1
Finally we estimate P({T = T(y_p),, } N HS). We say that Sy is (i) ‘bad’ if either S} €
Ly, S; & Ly and d(S},p(57)) = [[Ly|/2] or S} & Ly, S; € Ly and d(p(Sy), S7) = [|Lo|/2]
(ii)‘very bad’ if S}, S? € L, and d(S},S?) = [|Lu|/2]. It is easy to see that if A is as in
Lemma 5.1 and
A— —1,0 and +1 with probabilities 1/r,1/r and (r — 2)/r respectively  if |L,]| is odd
—1 and +1 with probabilities 2/r and (r — 2)/r respectively if |L, | is even
then the k*" increment
A if Sy, is very bad
d(Ski1,Si1) — d(Sg, S7) 2 LA or Ay with probability 1/2 if S, is bad
AN ] otherwise.

Kbd
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We call the k*" increment to be ‘good’ (or ‘bad’) if it has law same as that of A; (or A). Also
note that (i) every bad increment of -1 is followed by a good increment, (ii) on the event H¢,
the number of bad increments is at most agvy, and (iii) if Sy, is bad, then d(S}, 52) > ||L,|/2].
Combining these observations, coupling Sy with another random walk whose increment has
law same as that of A; and using optional stopping theorem,

P{T =Ty_pv,}NH;) < P (d(S’é, S2) + Z A; hits (9 — b)v, + 1 before (U + a + ag)vn>
i=1
(7“ _ 1)—19Un _ (7" _ 1)—(19+a+a3)vn bt
(= 1) — (= )-@rarane, = -V (5:12)

Combining (5.10), (5.11) and (5.12) and noting that TOHQ)U“ > T(ﬁ,b)vn A [ Kvy,] implies that
either T = T(ﬁ,b)vn or T = [Kv,], we get the result.

(2) Using similar argument which leads to (5.11) and letting a(r,v) := 2a1(r,v) + as(r,7),
where a; and a3 are as in Lemma 5.1 and 5.4 respectively, we have

P ({d (5%1@”]75’?]@”]) < ’Un/’y} N {To > [Kv,]} N HZ)

[(K—az)on]
< P S A<y | < (r—1)7
i=1
Combining the above bound with (5.10) we get the desired result. [ |

Now we use Proposition 5.2 and the coupling in Proposition 2.4 to prove the following
properties of the coalescing random walk system S (described just before (2.28)) starting
from y = (y1, y2), which is the main result of this section.

lual repulsion‘ Proposition 5.5. Let G, be as in (2.4) and logn < \, < n/(logn)" for somen > 0. There
are constants 3,wo(n) > 0 such that
(1) if wy, = (1/@)log,_1(n/A\n) for some w > wo and €, = Bwa ;3 (1 + \y)?, then for
any fired T >0, Gy, € G, and 'y = (y1,y2) satisfying d(y1,y2) > wn,

Pa, A, (d <§§1, Sé”) < wp/2 for some s € [O,T}) < (r—=1)"P%n for some py(n) > 0,
Pa, <d (S’g%m) < wp/2 for some s € |0, T}) < (r—=1)"PWn for some p(n) > 0, and

(2) if wy, < (1/3wp)log,_1(n/An) and €, is as in (1), then for any fired T > 0
Pa, A, ({d(gé”l,gf;”) < wp, for some s € [en,T]} N {§g1 + 8¥29s € [0, en]}> — 0 uniformly in G, € Gy.

Proof. For a and & are as in Proposition 5.2 let g := &(r,1/3) and
n =1/4,K := «(r,8,1/8,1/8),wp := max{5(K + 1),15(36 + 1)/2} if lim sup(log A,/ logn)
n—oo

wo =n/16,7 (w) = 4w/n, K = max{a(r,2/n',n —1/4,3/4),a(r,2/1',9'/2,1'/2)}  otherwise.

The choices of K and wy ensures that for w, = (1/w)log,_;(n/\,),w > wy,

)(1/2 + K)w, < (1/5)log,_, n for large enough n (ii)(r — 1)/D“n > logn, 5.13) |check hypi
r—1

which will be needed in what follows.
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(1) Recall the coalescing random walk system StA ™Y described before (2.31) and let

D :={(z,y) : z,y € [n] and d(z,y) < 3w,/4}, T} :=inf{t > 0: S}Y e DY,
Ri=inf {t >0 dpy (S}, Upy) <1/n? for each i = 1,2}

Note that if supg< ;<7 d(S¥", Sam Y < wy, /8 for each i = 1,2 and d(S¥", S¥2) < wy /2 for some s €

0, T, then using triangle inequality 79 < T'. This implies

Pa, (d (S‘S?Jl’Sén) < wy /2 for some s € [O,T]) < Pg, (Uz?l { sup d(s’gi75’£\n7yi) > w0n/8
0<s<T
+ P, (TS <R)+ Pg, (R < Ty <T)
(5.14)

By (1a) of Lemma 2.4 the first term in the right hand side of (5.14) is < Cj(r — 1)~4“ for
some constants Cy,c¢; > 0, which only depend on 7. To bound the second term note that
for G, € G, if we let v be a midpoint of y in the sense of (5.2), then the distribution of

{SY : m > 0} is same as that of the underlying discrete time jumps of {S2"¥ : s > 0}. So
using (1) of Proposition 5.2 ((i) of (5.13) ensures that the hypothesis holds) we have

Pa, (d (Ss’\”’yl, 5’;\"’”) fails to reach (3/4 + n')w, without hitting 3wn/4)
< 02(7,, _ 1)—02(77)“)” (515)

for some constants Ca,cy > 0. Another application of (1) of Proposition 5.2 suggests that
after reaching ((3/4 4+ n')w, whenever the distance between S2™¥' and S2™Y? reaches (3/4 +
n'/2)wn, it fails to increase to (3/4 + n')w, before deceasing to 3wy, /4 in one attempt with
probability < Cs(r — 1)~“»7'/2. At least w,n’ steps are needed in the Sg\ ™Y system between
two successive occasions when the distance between the two particles equals (3/4 + 7/2)wy,
and hits {(3/4 + n')wn, 3w, /4} in between. So

)

break upl

’ separation inc

Pa, x. (d (ngyl, ngyz) hits 3wy /4 after reaching (3/4 + 7' )wy before (wpn')(r — 1)<n7/4

many steps are taken in St)‘"’y system) < Cy(r —1)7wnn'/4, (5.16)

Since both the particles in St)‘ ™Y system are always equally likely to jump, standard large
deviation argument suggests that with probability > 1 — (r — 1)~¢4("%» each of the particles
jumps at least (wyn'/4)(r — 1)“n"/* many times before (w,n')(r — 1)“»"/* many steps are
taken in St)‘”’y system.

Combining the above observations, noting that the TV distance between Uy, and the law

of St)‘"’yi reduces to 1/n? before the particle jumps O(logn) times and using (i) of (5.13),
Pg,, (T <R) < Cs(r — 1)~ %n, (5.17)

To bound the third term in the right hand side of (5.14) note that if we writing u,, and uP for
Upp ¥ Upy and its restriction to D, then Pg,, x,(R < T < T) < 1/n*+Pg, »,(Th < Tlu ~ uy)
by the definition of R. So using (6.8.2) of [3], which is am implication of Proposition 23 in

’ reach stationc
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Aldous and Fill (2003), to bound Pg, », (15 < T|u ~ uy,)

T Ce
P R<TE<T)<1/n>+1- —
Gn,/\n( D> ) > /n + exp < EGn,An(TBW = un)> + EGn,An(TB\u _ un)
< 1/n*+ Cs/Eg, »,(THlu ~ uy,). (5.18)

Following the proof of (6.8.3) in [3] (see page 179),

1 1
N T8 |lu ~ uP
M Upp % Uy (D) G (TBIM ~ 1)

= o(n) + Eg, x, (TS u ~ up , T > logn) Pg, », (T35 > lognju ~ u))
= o(n) + Eg, i, (ITplu ~ u,)Pg, », (ITp > lognju ~ u?). (5.19)

The extra 1/\, factor appears in the beginning of the above display because the particles
in the S)™ system jumps at rate A,. Also note that u,(D) < r(r — 1) /n(r — 2) and
Pg, A, (T3 > logn|u ~ uP) = (r — 2)/r + o(1). So combining (5.18) and (5.19) the third
term in the right hand side of (5.14) is

An (1 — 1)%n
n

<Cy = Cy(r — 1)c7Men

for some constants C7, c7. This completes the proof of the first assertion of (1). The proof of
the other assertion is similar.
(2) Using triangle inequality it is easy to see that

Pa, x, ({d(gyl S¥2) < wy, for some s € [en,T]} N {S’gl #£ SY2 for all s € [0,6@})

< Pgm)\n (S’\T“y1 Sn¥2) < 3w, /2 for some s € [e,, ]} N {S;‘"’yl 4 §)n¥2ys € [0,6,1]})

+ Pa, n, ( { sup d(S’gl,S;\”’yQ)>wn/4})
0<s<T

+ Pg, n ({Syl S}S,’Q for all s € [0, en]} N {Sg\"’yl = S92 for some s € [O,En]}>
(5.20)

Using (1a) of Proposition 2.4 the second term in the right hand side of (5.20) is o(1). To
bound the third term note that if d(SY*, 52™%) < 1 for all 5 € [0, €,], then the event of interest
occurs only when one of the two particles SY has a single voting time and the corresponding
wake up dot in between a single voting time and the corresponding single wake up dot for
the other particle. The probability of one such occurrence is at most 1/\,, by (2.32), and so
imitating the proof of (1b) of Proposition 2.4 the third term in the right hand side of (5.20)
is at most 2(e, + 1/\,).

To bound the first term in the right hand side of (5.20), let U; be the number of steps
taken in St)‘ "Y system before time €,. Clearly U; has Poisson distribution with mean 28w,
and

Pey (U € [Bwn, 3Bwn]) = o(1) (5.21)
by standard large deviation argument. Now note that for G, € G, if we let v be the mid-
point of y in the sense of (5.2), then {U; = Lw,} C {5’ dny 4 =S/, } (described just before
Proposition 5.2). So if Uy = Lw, and d(Sp™"", Sp™**) > (L + 3)w, for some L, then obvi-
ously d(S2m¥", S2m¥2) > 3w, Also if U = Lw, and d(Sp™Y", Spm*?) < (L + 3)w, for some

an hit
break up
Ubd
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L € [B,30], then we can apply (2) of Proposition 5.2 with v = 1/3, because the choices of /3
and w( ensure the requirements for L. These observations together with (5.21) give

P, ., ({d (Sgy»yl, sjnmw) < 3wn} N {ngyl £ Shv2ys € |0, en]}) = o(1).
Also note that (1) of this lemma suggests

P ({d (8200, sm) < 32} 0 {a (s, s202) = 8w, | ) = o(1).
Combining last two displays the proof of (2) is complete. |
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