
1. Introduction

In this paper, we adopt the techniques in [2] to study the behavior of the continuous time
latent voter model, which was considered by [5] in the mean field setup, on a random r-regular
graph on n vertices. We choose the random graph Gn on the vertex set [n] := {1, 2, . . . , n}
according to the uniform distribution P̃ on simple graphs, and once chosen the graph remains
fixed through time.

We write x ∼ y to mean that x is a neighbor of y, and let

Ny := {x ∈ [n] : x ∼ y} (1.1) N

be the set of neighbors of y. The distribution PGn,λ of the latent voter model with parameter
λ conditioned on Gn can be described as follows. At any time each vertex is either active or
inactive, and ξt(x) ∈ {0, 1} denotes one of the two possible opinions of x at time t. Initially
all the vertices are active. When a vertex is active, at rate 1 it adopts the opinion of an
uniformly chosen random neighbor. Change in opinion makes an active vertex inactive. In
the inactive phase, a vertex does not change its opinion and returns to active phase at rate
λ. Let At be the set of active vertices and ξt := {v : ξt(v) = 0} be the set of vertices with
opinion 0 at time t. If Pλ denotes the distribution of the latent voter model on the random
graph Gn having distribution P̃, then

Pλ(·) = ẼPGn,λ(·),

where Ẽ is the expectation corresponding to the probability distribution P̃. In this paper we
consider λ = λn such that log n � λn � n/(log n)η for some η > 0. Here and later an � bn
(or equivalently bn � an) means an/bn → 0 as n→∞.

2. Construction and duality

2.1. Construction of the graph Gn. We construct our random graph Gn on the vertex
set [n] := {1, 2, . . . n} by assigning r “half-edges” to each of the vertices, and then pairing the
half-edges at random. If r is odd, then n must be even so that the number of half-edges, rn,
is even to have a valid degree sequence. Let P denote this distribution of Gn. We condition
on the event En that the graph is simple, i.e. it does not contain a self-loop at any vertex,
or more than one edge between two vertices. It can be shown (see e.g. Corollary 9.7 on page
239 of [?JLR00]) that P(En) converges to a positive limit as n→∞, and hence

if P̃ := P(·|En), then P̃(·) ≤ cP(·) for some constant c = c(r) > 0. (2.1) Ptilde

So the conditioning on the event En will not have much effect on the distribution of Gn. It is
easy to see that the distribution of Gn under P̃ is uniform over the collection of all undirected
r-regular graphs on the vertex set [n]. Let

d(u, v) be the length of the shortest path between u and v,D(v,M) = {u : d(u, v) ≤M}
d(U, v) := min

u∈U
d(u, v) and Gv,M be the subgraph of Gn induced by D(v,M). (2.2)

We call v and M to be the root and depth of Gv,M respectively. If Gx,M has no loop, then it
is a finite r-tree, i.e., all the vertices except the leaves have degree r.

If we let

Li(Gn) :=
{
v ∈ [n] : Gv,d(1/5) logr−1 ne has at most i loops

}
, i = 0, 1, and (2.3) L0G

Gn := {simple r-regular graph Gn on the vertex set [n] : |L0(Gn)| ≥ n− 2n4/5

and |L1(Gn)| = n}, (2.4) cG
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then the following probability estimates show that P̃(Gn ∈ Gn)→ 1 as n→∞.

graph est Lemma 2.1. For L0(Gn) and Gn as in (2.3) and (2.4),

(1)P̃(v 6∈ L0(Gn)) ≤ C1
2.1n

−3/5 (2)P̃(Gcn) ≤ C2
2.1n

−1/5forsomeconstantsCi2.1 = Ci2.1(r) > 0.

Proof. While exploring the vertices of Gn one at a time starting from v and using a breadth-
first search algorithm based on the distance function d of (2.2), the maximum number of

vertices in Gv,d(1/5) logr−1 ne is r[1 + (r − 1) + · · ·+ (r − 1)d(1/5) logr−1 ne−1] ≤ 2rn1/5. So under

the law P at any step the probability of selecting a vertex that has already been touched is
≤ 2r2n1/5/(rn− 2r2n1/5). So,

P̃(v 6∈ L0(Gn)) ≤ c(r)P(v 6∈ L0(Gn)) ≤ c(r) 2r3n2/5

rn− 2r2n1/5
≤ c1(r)n−3/5, (2.5)

P̃(v 6∈ L1(Gn)) ≤ c(r)P(v 6∈ L1(Gn)) ≤ c(r)

(
2r3n2/5

rn− 2r2n1/5

)2

≤ c2(r)n−6/5

for large enough n. Hence, P̃(|L1(Gn)| < n) ≤ n · c2(r)n−6/5 = c2(r)n−1/5.

Next observe that if Clv and Clw are the clusters of size 2rn1/5 starting from v and w
respectively and Clv,w = Clv ∩ Clw, then using similar argument as above

P̃(Clv,w 6= ∅) ≤ c(r)
2r3n2/5

rn− 2r2n1/5
≤ c1(r)n−3/5 for large enough n.

Since on the event {Clv,w = ∅}, {v ∈ L0(Gn)} is independent of {w ∈ L0(Gn)},

P̃(v, w 6∈ L0(Gn)) ≤ P̃(Clv,w 6= ∅) + P̃(v, w 6∈ L0(Gn), Clv ∩ Clw = ∅)

≤ P̃(Clv,w 6= ∅) +
P̃({v 6∈ L0(Gn)} ∩ {Clv ∩ Clw = ∅})P̃({w 6∈ L0(Gn)} ∩ {Clv,w = ∅})

P̃(Clv,w = ∅)
,

so that covP̃(1{v 6∈L0(Gn)},1{w 6∈L0(Gn)}) ≤ 3P̃(Clv,w 6= ∅) ≤ 3c1(r)n−3/5 for large enough n.

Using the above estimate and a standard second moment argument we get (2). �

2.2. Construction of ξt. Since we will mostly work with the rescaled process ξλnt , t ≥ 0,

where ξλnt := ξλnt, here we describe the construction of the process ξλnt . To construct the
process, we use a graphical representation. For x ∈ [n], we set W x

0 = 0 = V x
0 and introduce

independent Poisson processes W x := {W x
m : m ≥ 1} and V x := {V x

m : m ≥ 1} with rates λ2
n

and λn respectively. From the continuity of the exponential distribution it is easy to see that

PGn,λn(V x ∩W y = ∅ for all x, y ∈ [n]) = 1.

For each x ∈ [n], we put a dot at the locations (x,W x
m),m ≥ 0, and call them ‘wake up dots’

for x. At the times W x
m, the vertex x becomes active irrespective of its earlier status. We call

the times V x
m,m ≥ 1, voting times for x. If x is active at some voting time V x

m, it consults with
a random neighbor Yx,m having uniform distribution over Nx to consider whether to change

opinion or not. So the value ξλnt (x) do not change for t ∈ [V x
m−1, V

x
m). The random variables

Yx,m, x ∈ [n], are independent of the Poisson processes and all are independent of an initial

configuration ξλn0 ∈ {0, 1}[n].

We obtain the values ξλnt (x) recursively as follows. First we partition the voting times for
x according to their positions relative to the corresponding wake up dots. For m ≥ 1, let

Ixm := V x ∩ [W x
m−1,W

x
m). (2.6) I_x^m def
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So Ixm denotes the voting times for x between its (m− 1)th and mth wake up dots.

I . If Ixm = ∅, then we set ξλnt (x) = ξλnWx
m−1

(x) for t ∈ [W x
m−1,W

x
m] (2.7) xidef1

and x is active during [W x
m−1,W

x
m].

II . If Ixm = {V x
k }, then we set ξλnt (x) =

{
ξλnWx

m−1
(x) for t ∈ [W x

m−1 ≤ t < V x
k

ξλnV x
k −

(Yx,k) for V x
k ≤ t ≤W x

m

(2.8) xidef2

and x becomes inactive at time V x
k if and only if ξλnWx

m−1
(x) 6= ξλnV x

k
(x).

In case II, we call V x
k a single voting time and W x

m−1 a single wake up dot for x. To facilitate
the definition of the dual process we draw an arrow from (x, V x

k ) to (Yx,k, V
x
k ) and call it a

voter arrow. For |Ixm| ≥ 2 there are two cases depending on

Jxm :=
{
j : V x

j ∈ Ixm with ξλnWx
m−1

(x) 6= ξλnV x
j

(Yx,j)
}
.

Let jxm := min Jxm when Jxm 6= ∅.

III . If |Ixm| ≥ 2 and Jxm 6= ∅, then we set ξλnt (x) =

{
ξλnWx

m−1
(x) for W x

m−1 ≤ t < V x
jxm

1− ξλnWx
m−1

(x) for V x
jxm
≤ t ≤W x

m,

(2.9) xidef3

and x becomes inactive at the time V x
jxm

.

IV . If |Ixm| ≥ 2 and Jxm = ∅, then we set ξλnt (x) = ξλnWx
m−1

(x) for t ∈ [W x
m−1,W

x
m] (2.10) xidef4

and x remains active during [W x
m−1,W

x
m].

In other words, at the voting times V x
j ∈ Ixm, x adopts the opinion of Yx,j for j ≤ jxm and

ignores the opinion of Yx,j for j > jxm. In cases III and IV, we need to know the state of the
vertices x at time W x

m−1 and Yx,k at time Vx,k for V x
k ∈ Ixm to update that of x during the

time interval [W x
m−1,W

x
m]. So in order to facilitate the definition of the dual, we write a ∗

next to (x,W x
m−1), call W x

m−1 a ∗-dot, draw an arrow from (x,W x
m−1) to each of (Yx,k,W

x
m−1)

for k ∈ {k : V x
k ∈ Ixm}, and call these ∗-arrows.

It is not hard to show that the above recipe defines a pathwise unique process. To compute
the state of a vertex at time T we work backwards in time and use the following approximate
dual process.

At times it is easier to use notation for the independent Poisson processes of voting events
Λxv(dt, dy), x ∈ [n], on R×Nx with points {(V x

m, Yx,m)} and intensity λn dt× θx, where θx is
uniform overNx, and also the independent Poisson processes of wake up events Λxw(dt), x ∈ [n],
on R with points {W x

m} and intensity λ2
n dt.

sect_X
2.3. The approximate dual process X. Fix T > 0 and a vector of M + 1 vertices z =
(z0, . . . , zM ), where each zi ∈ [n]. The dual process X = Xz,T starts from these vertices

at time T and then works backwards in time to determine the values ξλnT (zi). X will be a
coalescing branching random walk taking values in

D := [D([0, T ], [n] ∪ {∞})]N

and starting from X0 = (z0, . . . , zM ,∞,∞, . . .). Here D([0, T ], [n] ∪ {∞}) denotes the set of
all cádlág paths ω : [0, T ]→ [n]∪ {∞} endowed with Skorokhod topology, and D is given the
product topology.
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For Xz,T = (Xz,T,0,Xz,T,1, . . .) ∈ D, let kz(t) = k(t) := max{i : Xi
t 6= ∞}. Define an

equivalence relation ∼t on {0, 1, . . . , k(t)} as i ∼t i′ if Xz,T,i
t = Xz,T,i′

t 6= ∞, and choose the
minimum index from each of the equivalent classes to form the set Jz(t) = J(t). We need to
know the states of the vertices in {Xi

t : i ∈ J(t)} at time T − t to determine the states of
z0, . . . , zM at time T . We often drop the superscripts z, T when there is no ambiguity.

If there were no ∗-arrows, then the coordinates Xj
t , j ∈ J(t), follow the system of coalescing

random walks. Coalescing refers to the fact that if Xj
s = Xj′

s 6= ∞ for some s < T and

j, j′ ≤ k(s), then Xj
t = Xj′

t for all t ∈ [s, T ]. Jumps in the coalescing random walk system
occurs when one of the particles in the dual encounters the tail of a voter arrow in the graphical

representation, i.e. if j ∈ J(s−) and x = Xj
s− satisfy T − s = V x

k for some k such that V x
k

is a single voting time for x. In that case, we set Xj
s = Yx,k. The particle coalesces with

Xj′
s = Yx,k if such a j′ 6= j exists, and we remove j ∨ j′ from J(s−) to form J(s).
To complete the definition of the dual it remains to describe what happens when the dual

encounters the tails of ∗-arrows. Let Rz,T
0 = 0 and for m ≥ 1 let Rz,T

m be the first time

s > Rz,T
m−1 when a particle in the dual encounters the tail of a ∗-arrow. If

j ∈ J(Rz,T
m −) and x = Xj

Rz,T
m −

satisfy T −Rz,T
m = W x

k−1 for some k and |Ixk | ≥ 2, (2.11) mu_mdef

then we set the parent site index µm = j. If |Ixk | = `m and Ixk = {V x
l+1, . . . , V

x
l+`m
}, we create

`m many new particles in the dual by setting Y i
m = Yx,l+i,

k(Rz,T
m ) = k(Rz,T

m−1) + `m, and X
k(Rz,T

m−1)+i

Rz,T
m

= Y i
m, 1 ≤ i ≤ `m. (2.12) dualdef

Since |Ixk | | {|Ixk | ≥ 2} has shifted geometric distribution,

PGn,λn(`m = k) =
λn

(1 + λn)k−1
, k = 2, 3, . . . (2.13) elldist

The values of the other coordinates remain unchanged, i.e. Xj

Rz,T
m

= Xj

Rz,T
m −

for all j ∈

J(Rz,T
m −). Each ‘new’ particle immediately coalesces with any particle already present at the

vertex where it is born, and we make the necessary changes to J(Rz,T
m −) to get J(Rz,T

m ) ⊇
J(Rz,T

m −).

The computation of ξλnT (zi) using the dual is described in the next subsection. k(·) changes

only at the times {Rz,T
m : m ≥ 1}, and so it remains unchanged on [Rz,T

m , Rz,T
m+1).

Note that Xt is not measurable with respect to the σ-field generated by the wake up dots
and voting times within [T − t, T ]. Let

AxT,t :=
{∣∣Im(x,T−t)

∣∣ = 1
}
, where m(x, s) := min{m ≥ 1 : W x

m > s}
is the last wake up dot for x before time T − t for the time reversed process. Consider the
right-continuous filtration {FTt : t ≥ 0} given by

FTt := σ ({Λxv([T − s, T ]×A) : s ≤ t, A ⊂ Nx, x ∈ [n]}

∪{Λxw([T − s, T ]) : s ≤ t, x ∈ [n]} ∪
{
1Ax

T,t
: x ∈ [n]

})
. (2.14) F_tdef

Then the dual Xz,T is FTt -adopted.

mble Lemma 2.2. Let {Rz,T
m } be the random times defined just before (2.11), {(µm, `m, Y 1

m, . . . , Y
`m
m )}

be as defined just after (2.11), and {FTt : t ≥ 0} be the filtration defined in (2.14). Then

(1) the dual process Xz,T
t is FTt -adopted,
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(2) Rz,T
m is FTt -stopping time and Rz,T

m ↑ ∞ a.s.
(3) µm, `m and Y i

m, 1 ≤ i ≤ `m, are FT
Rz,T

m
measurable.

Proof. Since the wake up dots and the voting times for x are independent Poisson processes
with rates λ2

n and λn respectively, |Ixm|,m ∈ Z, are i.i.d. with Geometric(λ2
n/(λn + λ2

n))
distribution so that

PGn,λn(|Ixm| = k) =
λn

(1 + λn)k+1
and PGn,λn(|Ixm| ≥ k) =

1

(1 + λn)k
for k = 0, 1, . . . . (2.15) I^x_dist

Specifically, for each x ∈ [n] and m ∈ Z, W x
m is a ∗-dot with probability 1/(1 + λn)2 indepen-

dently of other wake up dots. So if we reverse time, then using the thinning property of the
Poisson processes and noting that the time reversed Poisson process is also a Poisson process
with same intensity, the ∗-dots for x form an FTt -adopted Poisson point process with intensity
λ2
n/(1 + λn)2.

(1). Note that the birth of new particles at some time in the dual depends on whether one
of the existing particles comes across a ∗-dot or not. Since the ∗-dots by time t are FTt -
measurable, so are the birth events. On the other hand, jump events depend on whether one
of the particles in the dual encounters a single voting time or not. Now if time is reversed,
then in order to know whether a voting time V x

k ≥ T − t is single or not we need information
about the events {{|Ixm| = 1} : m ≥ mx(T, t), x ∈ [n]}. Thus, all the jump events in the dual
are FTt -adopted, and hence so is X.

(2). Since X is FTt -adopted and Rz,T
m is the first time after Rz,T

m−1 that one of the particles in the

dual has its first ∗-dot, Rz,T
m must be a FTt -stopping time by induction onm. Moreover, since at

most r new particles are born on every birth event, it is easy to see that PGn,λn(Rz,T
m+1−R

z,T
m >

·|F
Rz,T

m
) ≥ P ((M + 1 + rm)−1Z > ·), where Z has exponential distribution with mean 1. This

ensures that Rz,T
m ↑ ∞ a.s.

(3). Since µm is uniform over J(Rz,T
m −), it must be FT

Rz,T
m

-measurable. By the definition of

`m and Y i
ms, `m = |Ixk | and Y i

m, 1 ≤ i ≤ `m, are chosen uniformly from Nx, where x = Xµm

Rz,T
m −

and T −Rz,T
m = W x

k−1 are as in (2.11). So `m and Y i
ms are FT

Rz,T
m

-measurable. �

sect_zeta

2.4. The computation process ζ. Given the coalescing branching random walk {Xz,T
s :

s ∈ [0, T ]} and a set of initial values ζ0(j) = ξλn0 (Xj
T ), j ∈ J(T ), we will define {ζt(i), t ∈

[0, T ], i ≤ k((T − t)−)} so that on a ‘good event’

Ez
T (defined in (2.18)), , ζt(i) = ξλnt (Xi

T−t)∀t ∈ [0, T ] and i ≤ k((T − t)−). (2.16) duality

Note that X and ζ have different time directions.
First we complete the initial states by setting ζ0(j) = ζ0(i) for j ∼T i ∈ J(T ). The values

ζt(i) do not change except at times t = T −Rz,T
k . So if h = max{m : Rz,T

m ≤ T}, then ζt = ζ0

for t < T −Rz,T
h . To update the values of ζ at time T −Rz,T

h first we consider µh and set

ζ
T−Rz,T

h
(µh) =

{
1− ζ

(T−Rz,T
h )−(µh) if ζ

(T−Rz,T
h )−(µh) 6= ζ

(T−Rz,T
h )−(Y i

h) for at least one i,

ζ
(T−Rz,T

h )−(µh) otherwise.

For k ≤ k(Rz,T
h −) and k 6= µh, we set

ζ
T−Rz,T

h
(k) = ζ

T−Rz,T
h

(µh) if k ∼
Rz,T

h
µh and ζ

T−Rz,T
h

(k) = ζ
(T−Rz,T

h )−(k) otherwise.
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The values ζt(i) remain the same for t ∈ [T −Rz,T
h , T −Rz,T

h−1). If h ≥ 2, we proceed as above.

Otherwise we have reached t = T −Rz,T
0 = T , when we set ζT = ζT−.

Having defined the computation process we now describe Ez
T for which (2.16) holds. Recall

the notations (Rz,T
m , x, k, Y i

m, V
x
l+i) used in and just after (2.11). The states of Y i

m at time V x
l+i

must be the same as those at time W x
k−1, otherwise there may be a discrepancy between ζ

and ξλn . Also whenever an old particle jumps or a new particle is born in the dual process,
it will land between two successive wake up dots with high probability. To avoid erroneous
computation of states we need to make sure that there is at most one voting time between
those two successive wake up dots. Keeping these in mind, we define

Ez,T
m :=

{
ξλnt (Y i

m) = ξλnWx
k−1

(Y i
m) for t ∈ [W x

k−1,W
x
k ] and i ≤ |Ixk |

}
, where (x, k, Y i

m) are as in (2.11),

N(z, T ) := max{m ≥ 0 : Rz,T
m ≤ T}, and (2.17) N_T

Ez
T :=

(
∩N(z,T )
m=1 Ez,T

m

)
∩
(
∩{(x,t):t≤T,x=Xz,T,i

t 6=Xz,T,i
t− }{W

x
m(x,t)−1 is not a ∗-dot}

)
(2.18) E^T def

dualcond Lemma 2.3. Let Ez
T be as in (2.18). Then (2.16) holds on Ez

T and PGn,λn(Ez
T ) = 1− o(1).

Proof. Ez,T
m occurs if there is no voting arrow for the neighbors of x during [W x

k−1,W
x
k ]. Since

x has r neighbors, PGn,λn(Ez,T
m ) ≥ 1− λnr/(λnr + λ2

n). This bound and Lemma 2.8 imply

PGn,λn

(
∩N(z,T )
m=1 Ez,T

m

)
≥ PGn,λn(∩

√
λn

m=1E
z,T
m )− PGn,λn(N(z, T ) >

√
λn)

≥ 1−
√
λn

1 + λn/r
− (M + 1)erT

M + 1 + 2
√
λn

= 1− o(1)

Whenever x = Xi
t 6= Xi

t−, W x
m(x,t)−1 is a ∗-dot with probability [λ2

n/(λn + λ2
n)]2 ≤ 1/λ2

n.

Since the expected number of jumps within time [0, T ] for each particle is ≤ λnT + 1, a single
particle encounters such an event with probability ≤ T/λn+1/λ2

n by Markov inequality. Now
if N(z, T ) ≤ k, then the total number of particles is ≤ (M + 1) + rk. So using Lemma 2.8,

PGn,λn

(
∪{(x,i,t):0≤t≤T,i≤k(t),x=Xi

t 6=Xi
t−}
{W x

m(x,t)−1 is a ∗-dot}
)

≤ PGn,λn(N(z, T ) >
√
λn) + (M + 1 + r

√
λn)(

T

λn
+

1

λ2
n

) = o(1).

Combining the two estinates we get the desired result. �

sect_Xhat
2.5. Branching random walk approximation X̂. Recall from (2.15) that PGn,λn(|Ixm| =
1) = λn/(1 + λn)2, which implies that if time is reversed, the rate of the single wake up dots
{W x

m : |Ixm+1| = 1} is λ3
n/(1 + λn)2. So when λn is large, the random walk steps in the dual

are taken very fast (roughly with rate λn).
Noting that Gn locally looks like the homogeneous r-tree, random walk on a tree is transient

and random walk steps are taken very fast in the dual, the newly born particles will either
coalesce quickly among themselves or with the parent within a short time which is o(n), or do
not coalesce before time O(n). As in [4], it is difficult to deal with such a process, where births
of new particles are quickly followed by coalescence. To avoid this problem we introduce a
non-coalescing branching random walk X̂ along with the corresponding computation process
ζ̂ which approximates X and ζ respectively. We will use a coupling between (X, ζ) and (X̂, ζ̂)
later to estimate the difference between them.
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For m ≥ 1 let Πm be the set of all partitions of {0, 1, . . . ,m} and we write i ∼π j if i and j
are in the same cell of π. For π ∈ Πm let J0(π) be the subset of {0, . . . ,m} consisting of the
smallest indices of the cells of π and |π| = |J0(π)| be the number of cells of π.

For m ∈ {1, . . . , r} and Y = (Y 0, . . . , Y m) such that Y 1, . . . , Y m ∈ NY 0 , let {SY
t =

(SY,0
t , . . . , SY,m

t ), t ≥ 0} be the rate one coalescing simple random walk system on the homo-
geneous r-tree Tr with paths in [D([0,∞),Tr)]m+1 and initial state SY

0 = Y. Since simple
random walk on Tr is transient, for any t > 0 we get a random partition of {0, . . . ,m} based

on the equivalence relation i ∼t j iff SY,i
t = SY,j

t . Let {an} be any sequence such that an ↑ ∞
and

Ξm,an be the law on Πm associated with the equivalence relation i ∼an j iff SY,i
an = SY,j

an .
(2.19) nudef

It is easy to see that

Ξm,an weakly converges to Ξm,∞ as n→∞, where Ξm,∞ is the law on Πm (2.20)

associated with the equivalence relation i ∼∞ j iff SY,i
t = SY,j

t for some t > 0.

Recalling the distribution of the new particles born during a birth event in the dual X, we
let Ml be the random size of the subset obtained after l many ‘with replacement’ draws from

{1, 2, . . . , r}, i.e., Ml d= |{L1, L2, . . . , Ll}|, where Lis are i.i.d. with common distribution U[r].
We will consider the law

ΞM`,an on ∪rk=1 Πk, where ` has shifted Geometric distribution as in (2.13). (2.21) nu_ell

Since λn →∞ implies P (M` = 1)→ 1/r and P (M` = 2)→ 1−1/r, using standard argument
for weak convergence

ΞM`,an converges weakly to Ξ∞ :=
1

r
Ξ1,∞ +

(
1− 1

r

)
Ξ2,∞. (2.22) nuconv

Fix distinct sites z0, . . . , zM ∈ [n] and T > 0. Our branching random walk X̂ will have paths

in D. It will also be associated with a collection of sets of indices Ĵ(t) := {j : X̂j
t 6=∞}, t ≥ 0,

and numbers k̂(t), t ≥ 0 (analogous to J(t) and k(t) of Section 2.3). It will start at time
T and will be defined backward in time. Let π0 ∈ ΠM be a partition (defined explicitly in
Section 2.7) associated with the initial coalescence in the dual before any birth event. For
k ≥ 1, let (`k,L

k, πk) be independent of π0 and i.i.d. such that (i) `1 has distribution as in
(2.13) (ii) L1 = (L1

1, . . . , L
1
`1

), where L1
i s are i.i.d. with common distribution U[r] and (iii)

π1|(`1,L1) ∼ ΞM`1 ,βωn
, where M`1 = |{L1

1, . . . , L
1
`1
}, β and ωn will be explicitly defined in

(2.29) and Ξ·,· is defined in (2.19). Based on the sequence of partitions {πk, k ≥ 0} and

{(`k,Lk) : k ≥ 1}, we define a sequence of subsets of N inductively as follows:

Ĵ0 := J0(π0) and Ĵk+1 := Ĵk ∪ {M + `1 + · · ·+ `k + j : j ∈ J0(πk+1) \ {0}} for k ≥ 0. (2.23) Jhatdef

Similar to the analogues corresponding to X, let R̂z,T
0 = 0 and conditioned on {`m,m ≥ 1}

and {πm,m ≥ 0} let R̂z,T
m+1 − R̂z,T

m be independent and exponentially distributed random

variables with mean [λ2
n|Ĵm|/(1 + λn)2]−1. Also let {µ̂m,m ≥ 1} be an independent sequence

of independent random variables where µ̂m is uniform over Ĵm−1, and set

k̂(t) := M + `1 + · · ·+ `m and Ĵ(t) := Ĵm on
[
R̂z,T
m , R̂z,T

m+1

)
.

In the branching random walk X̂, µ̂m is the index of the site which gives birth at time R̂z,T
m .
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Conditioned on {(R̂z,T
m , µ̂m, Ĵm) : m ≥ 0} we now define X̂ inductively as follows.

X̂j
0 =

{
zj if j ∈ Ĵ0

∞ otherwise.
(2.24) Xhat0def

Form ≥ 0, the particles X̂j , j ∈ Ĵm, follow independent copies of simple random walk (starting

from X̂j

R̂z,T
m

respectively) on the time interval [R̂z,T
m , R̂z,T

m+1). Jumps in the random walk occur

when a particle encounters a single voting time. Recalling that θx denotes the law of uniform

distribution over Nx, at time R̂z,T
m+1 we set

X̂j

R̂z,T
m+1

:=


X̂j

R̂z,T
m+1−

if j ∈ Ĵm

Ŷ j
m+1, where Ŷ j

m+1 ∼ θx for x = X̂
µ̂m+1

R̂z,T
m+1−

, if j ∈ Ĵm+1 \ Ĵm
∞ otherwise.

The choices Ŷ j
m+1 are made independently. We have set Ĵ(t) = Ĵm on [R̂z,T

m , R̂z,T
m+1) so that

no coalescence occurs after the birth of the particles. Also note that the number of new
particles are less than those in case of X to mimic the quick coalescence there. Therefore,
if we condition on {(`m,Lm, πm)} and time is reversed, then X̂ is a branching random walk,
where the initial particles are at zj , j ∈ J0(π0), each particle jumps to a random neighbor
whenever it encounters a single voting time and branches at rate λ2

n/(1 + λn)2, and |πm| − 1
new particles are born on randomly chosen neighboring vertices of the m-th branching site.

sect_zetahat
2.6. Computation process ζ̂. As in Section 2.4, the branching random walk {X̂s : s ∈
[0, T ]}, the associated sequence {(`m,Lm, πm, R̂z,T

m , µ̂m)} and a set of initial values ζ̂0(j), j ∈
Ĵ(T ), we now define a computation process ζ̂ for X̂ on the time interval [0, T ]. We start with
the definition of an equivalence relation ∼̂

R̂z,T
m

on {0, 1, . . . ,M + `1 + · · ·+ `m}.

For 0 ≤ j, j′ ≤M, j∼̂
R̂z,T

m
j′ iff j ∼π0 j′,

for 1 ≤ k ≤ m and 1 ≤ j ≤ `k,M +

k−1∑
i=1

`i + j∼̂
R̂z,T

m
µ̂k iff Lkj ∼πk 0, (2.25) simhatdef

for 1 ≤ k ≤ m and 1 ≤ j, j′ ≤ `k,M +
k−1∑
i=1

`i + j∼̂
R̂z,T

m
M +

k−1∑
i=1

`i + j′ iff Lkj ∼πk L
k
j′ .

Extend the definition of the equivalence relation to [0, T ] by setting j∼̂tj′ iff j∼̂
R̂z,T

m
j′ for

R̂z,T
m ≤ t < R̂z,T

m+1 and 0 ≤ j, j′ ≤M + `1 + · · ·+ `m.

The definition of ζ̂ is similar to that of ζ in Section 2.4 with hats added to the notations.
First we set ζ̂0(j′) := ζ̂0(j) for j′ ≤ k̂(T ) and j′∼̂T j ∈ Ĵ(T ). The values ζ̂t(j) do not change

except at times t = T − R̂z,T
k . So if h = max{m : R̂z,T

m ≤ T}, then ζ̂t = ζ̂0 for t < T − R̂z,T
h .
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To update the values of ζ̂ at time T − R̂z,T
h we set

ζ̂
T−R̂z,T

h
(µ̂h) =


1− ζ̂

(T−R̂z,T
h )−(µ̂h) if ζ̂

(T−R̂z,T
h )−(µ̂h) 6= ζ̂

(T−R̂z,T
h )−(M + `1 + · · ·+ `h−1 + j)

for at least one j ∈ {1, . . . , `h},
ζ̂

(T−R̂z,T
h )−(µ̂h) otherwise.

,(2.26)

ζ̂
T−R̂z,T

h
(k) =

{
ζ̂
T−R̂z,T

h
(µ̂h) if k ≤ k̂(R̂z,T

h −) and k 6= µ̂h and k∼̂
R̂z,T

h
µ̂h

ζ̂
(T−R̂z,T

h )−(k) if k ≤ k̂(R̂z,T
h −) and k 6 ∼̂

Rz,T
h
µ̂h.

(2.27)

The values ζ̂t(i) remain the same for t ∈ [T − R̂z,T
h , T − R̂z,T

h−1). If h ≥ 2, we proceed as above.

Otherwise we have reached t = T − R̂z,T
0 = T , when we set ζ̂T = ζ̂T−.

sect_coupling
2.7. Coupling of (X, ζ) and (X̂, ζ̂). Here we describe a construction of the branching ran-

dom walk X̂ and the associated computation process ζ̂ using the graphical representation
such that if λn is large, then with high probability the dual X is close to X̂ and both ζ and
ζ̂ will compute the same result at time T given identical inputs at time 0. As earlier, fix
z0, . . . , zM ∈ [n] and T > 0. Recall the time-reversed filtration FTt defined in (2.14) and the

stopping times {Rz,T
m : m ≥ 1} defined in Section 2.3.

To define the partitions {πm : m ≥ 0} needed for the construction of X̂, first we introduce
the following useful notation. For a FTt stopping time σ and FTσ measurable random vector

Y = (Y0, . . . , YM ′) ∈ [n]M
′
, let {ŜY

σ,t = (ŜY,0
σ,t , . . . , Ŝ

Y,M ′

σ,t ) : t ≥ σ} be a system of coalescing
random walks on Gn starting at time σ at locations Y and satisfying the following jump
rule. Whenever a particle in the system encounters the tail of a voting arrow in the graphical
representation, it jumps to the other end of it. When σ = 0, we write ŜY

t instead of ŜY
0,t. For

σ,Y as above and any t > 0, let

πσ,Y(t) ∈ ΠM ′ be the random partition at time σ + t (2.28) pi_Y

associated with the equivalence relation j ∼ j′ iff ŜY,j
σ,σ+t = ŜY,j′

σ,σ+t. Call πσ,Y(t) the random
partition at time σ + t with initial condition Y at time σ.

In order to have desirable probability estimates for several events we define

ωn := (1/$) logr−1(n/λn) and εn := βωnλ
−3
n (1 + λn)2, , (2.29) omega_n

where β and $ = 3$0 are positive constants defined in Proposition 5.5, and consider the
time εn for the rescaled process ξλnt . Since log n � λn and particles jump roughly at rate
λ3
n/(1 + λn)2, the time εn is small (εn → 0 as n→∞), but for large enough n it corresponds

to a large time, which is roughly equal to βωn (ωn →∞ as n→∞), for the unscaled process.

Using the above ingredients and ym := (Xµm

Rz,T
m
, Y 1

m, . . . , Y
`m
m ) form ≥ 1, where {µm, Rz,T

m , (Y i
m, 1 ≤

i ≤ `m)} are as in (2.12), we define

π0 := π0,z(εn) ∈ ΠM and for m ≥ 1, (2.30)

πm :=

{
π
Rz,T

m ,ym
(εn) if Rz,T

k > Rz,T
k−1 + εn for all 1 ≤ k ≤ m and Xµm

Rz,T
m
∈ L0(Gn)

π′m otherwise,

where L0(Gn) is as in (2.3) and {π′m : m ≥ 1} is an i.i.d. sequence of partitions with law
ΞM`,βωn

(ΞM`,· is defined in (2.21)) and chosen independent of FT∞.

Recall the notations FTt and m(x, t) defined in and just before (2.14) respectively. Also
recall the well known facts: (i) time-reversed Poisson processes are Poisson processes with the
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same intensity; (ii) in case of superposition of two independent Poisson processes (type I and
II), the locations of the points are independent of whether the first point is of type I or not;
(iii) homogeneous Poisson processes have translation invariance and independent increment
properties. Using these facts and (3) of Lemma 2.2, if F̄Tm := FT

Rz,T
m +εn

∨ σ(π′k, k ≤ m), then

πm is F̄Tm-measurable and is independent of F̄Tm−1.
Now we show that for each m ≥ 1, πm has law ΞM`,βωn

, where ΞM`,· is described in

(2.21) and (β, ωn as in (2.29), with high probability. In order to do that, let {Sλn,yt =

(Sλn,y,0t , . . . , Sλn,y,mt ) : t ≥ 0} be a coalescing system of random walks on Gn starting from

Sλn,y0 = y = (y0, . . . , ym)

with associated partitions πλn,y(t), t > 0, of {0, 1, . . . ,m}, (2.31) pi^lambda

in which each particle jumps at rate λ3
n/(1 + λn)2 to a randomly chosen neighbor.

partitioneq Proposition 2.4. (1) For y ∈ [n], the random walks Ŝyt and Sλn,yt (described just before
(2.28) and (2.31) respectively) can be coupled so that

(a) for any T, L > 0 PGn,λn(sup0≤s≤TS d(Ŝys , S
λn,y
s ) ≥ L) ≤ C2.4e

−L,

(b) for any εn ↓ 0, PGn,λn(sup0≤s≤εn d(Ŝys , S
λn,y
s ) ≥ 2) ≤ εn + 1/λn.

(c) for any s > 0 and k ≤ r if (Vi
s, . . . ,V

k
s) is an ordered tuple of ‘without replace-

ment’ draws from NŜy
s
, then

dTV
(
L
(
Vi
s

)
, U[n]

)
≤ dTV

(
L
(
Ŝys

)
, U[n]

)
≤ dTV

(
L
(
Sλn,yis

)
, U[n]

)
, 1 ≤ i ≤ k.

(2) For any y = (y0, . . . , ym), the coalescing random walk systems Ŝy
t and Sλn,yt can be

coupled so that
(a) for any εn ↓ 0 the associated partitions π0,y(·) and πλn,y(·) satisfy PGn,λn(πλn,y(εn) 6=

π0,y(εn)) ≤ (m+ 1)(εn + 2/λn).
(b) In addition, if y0 ∈ L0(Gn) (defined in (2.3)) and y1, . . . , ym ∈ Ny0 and εn ≤

(1/5) logr−1 n(1 + λn)2/λ3
n, then πλn,y(εn) ∼ Ξm,εnλ3n/(1+λn)2 defined just (2.20).

Proof. We couple the locations of two particles as described below so that they follow the

random walks Ŝyt and Sλn,yt respectively. They start from y at time 0. Whenever the first
particle hits the tail of some voter arrow in the time-reversed graphical representation, i.e.,
it encounters a single voting time, it allocates the jump time (if it is not already allocated)
for the second particle to be the corresponding single wake-up dot and jumps to the other
side of the voter arrow. The second particle jumps at its allocated jump time to the neighbor
of its current location following the trajectory of the first particle. Once the second particle
jumps, it waits for the next allocated jump time for jumping again. By the construction of
the graphical representation and noting that single wake-up dots occur at rate λ3

n/(1 + λn)2,
the two particles have the desired behavior.

It is easy to check that if the first particle jumps k times before the second particle jumps
once, then the distance between them after the jump of the second particle is at most k − 1.
To estimate the probability of the above event we use memoryless property of the exponential
distribution and the facts that the voting time and the wake-up dots occur at rate λn and
λ2
n respectively. A voting time is followed by a wake-up dot with probability λ2

n/(λn + λ2
n).

So for any x1, x2, . . . ∈ [n] such that xi+1 ∈ Nxi , i ≥ 1, the probability that between a single
voting time and corresponding single wake-up dot for x1 there are l or more voting times
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t2 < · · · < tl+1 < · · · for the vertices x2, . . . , xl+1, . . . respectively is

∞∑
k=l

(
λn

2λn + λ2
n

)k λ2
n

2λn + λ2
n

(
λ2
n

λn + λ2
n

)−1

≤ 1/λln. (2.32) jumpbd

Hence the distribution of the number of jumps for the first particle between consecutive
jumps of the second particle is stochastically dominated by Geometric distribution with mean
λn/(λn− 1). Consequently, if N(T ) is the number of jumps for the second particle by time T
and G1,G2, . . . are i.i.d. an the common law is Geometric with mean λn/(λn − 1), then

sup
0≤s≤T

d
(
Ŝys , S

λn,y
s

)
is stochastically dominated by

N(T )+1∑
i=1

Gi −N(T ). (2.33) supbd

(1a). Using (2.33) and noting that E exp(
∑N(T )+1

i=1 Gi −N(T )) ≤ C2.4(T ) for some constant
C2.4(T ), the result follows by Markov inequality.
(1b). Using (2.33) and Markov inequality

PGn,λn

(
sup

0≤s≤εn
d
(
Ŝys , S

λn,y
s

)
> 1

)
≤ P

N(εn)+1∑
i=1

1{Gi>1} ≥ 1


≤ E

N(εn)+1∑
i=1

1{Gi>1} = E(N(εn) + 1)P (G1 > 1) ≤ λnεn + 1

λn
.

(1c) We begin with the second inequality. Let Js be the difference between the number of
jumps for the two particles at time s and Bk(v) ⊂ [n] be the set of all vertices which can be
reached from v after k random walk steps. The coupling constructed above suggest that

PGn,λn

(
Ŝys = v

)
=

∑
k

PGn,λn

(
Ŝys = v

∣∣∣ Js = k
)
PGn,λn (Js = k)

=
∑
k

∑
u∈Bk(v)

PGn,λn

(
Ŝys = v, Sλn,yis = u

∣∣∣ Js = k
)
PGn,λn (Js = k) .

Using reversibility of the underlying discrete time simple random walk and by the definition
of total variation distance∑
u∈Bk(v)

PGn,λn

(
Ŝys = v

∣∣∣Sλn,yis = u, Js = k
)

= 1, |PGn,λn(Sλn,yis )−1/n| ≤ dTV (L(Sλn,yis , U[n])).

Combining the above observations with the fact that Sλn,yis and Js are independent we have∣∣∣∣PGn,λn

(
Ŝys = v

)
− 1

n

∣∣∣∣
≤

∑
k

∑
u∈Bk

∣∣∣∣PGn,λn

(
Sλn,yis

)
− 1

n

∣∣∣∣PGn,λn(Js = k)PGn,λn

(
Ŝys = v

∣∣∣Sλn,yis = u, Js = k
)
.

Summing both side over v ∈ [n] and dividing by 2 the second inequality is established.



12

To prove the first inequality note that for any u, v ∈ [n] such that PGn,λn(Vi
s = u|Ŝys =

v) = 1/r.So

PGn,λn(Vi
s = u) =

1

r

∑
v∈Nu

PGn,λn(Ŝys = v), which implies

1

2

∑
u∈[n]

∣∣∣∣PGn,λn(Vi
s = u)− 1

n

∣∣∣∣ ≤ 1

2r

∑
u∈[n]

∑
v∈Nu

∣∣∣∣PGn,λn(Ŝys = v)− 1

n

∣∣∣∣ .
Interchanging the sums over u and v we get the desired inequality.

(2a) We use the coupling between Ŝyit and Sλn,yit for 0 ≤ i ≤ m to define the coupling between

the coalescing random walk systems Ŝy
t and Sλn,yt . It suffices to show that PGn,λN (Ŝy

εn 6=
Sλn,yεn ) has the desired upper bound, as Ŝy

εn = Sλn,yεn ensures π0,y(εn) = πλn,y(εn). If

sup0≤s≤εn d(Ŝyis , S
λn,yi
s ) ≤ 1 for all i = 0, 1, . . . ,m, and if the time εn is not between a single

voting time and the corresponding wake up dot for the locations of the particles in the Ŝy
t sys-

tem at that time, i.e., the wake up dot immediately after time (in the time reversed graphical

representation) εn is not a single wake up dot for each of these locations, then Ŝy
εn = Sλn,yεn .

Since there are always at most (m+ 1) particles in the two systems, we can use (1b) to have

PGn,λn(Sλn,yεn 6= Ŝy
εn) ≤ (m+ 1)

[
PGn,λn

(
sup

0≤s≤εn
d
(
Ŝy1s , S

λn,y1
s

)
> 1

)
+

λn
(1 + λn)2

]
≤ (m+ 1)(εn + 2/λn).

(2b) It follows from the fact that if y0 ∈ L0(Gn) and y1, . . . , ym ∈ Ny0 , then {Sλn,yt : 0 ≤ t ≤
(1/5) logr−1 n(1+λn)2/λ3

n} has the same distribution as {Sy
λ3nt/(1+λn)2

: 0 ≤ t ≤ (1/5) logr−1 n}
(defined in Section 2.5) after appropriate relabeling of the vertices of Tr.. �

So (2) of Proposition 2.4 ensures that {πm : m ≥ 1} described in this section and in Section

2.5 have the same distribution with high probability. The next step in the construction of X̂
is to check whether certain ‘bad events’ occur to it or not. To do so, we use L0(Gn), (εn, ωn)

and (µm, R
z,T
m ) defined in (2.3), (2.29) and (2.11) to introduce the stopping times

τm := inf
{
s ≥ Rz,T

m−1 + εn : d(Xj
s , X

j′
s ) ≤ ωn for some j, j′ ∈ J(s) with j 6= j′

}
σm := inf{s ≥ Rz,T

m−1 : Xj
s = Xj′

s for some j 6= j′ with either j, j′ ∈ J(Rz,T
m−1−) or

j ∈ J(Rz,T
m−1−) \ {µm} and j′ ∈ J(Rz,T

m−1) \ J(Rz,T
m−1−)

}
, (2.34) tausigmakappa

κ := min
{
m : Xµm

Rz,T
m
6∈ L0(Gn)

}
.

We also let Syt be the continuous time rate one simple random walk on Gn and choose % > 0
large enough so that

sup
y∈[n]

dTV
(
L(Sys ), U[n]

)
≤ 1/n2 for all s ≥ % log n. (2.35) varrho

Based on the above stopping times and the choice of % we define the time Tb when one of the
four possible bad events occurs.

Tb := min

{
Rz,T
m : m ≥ 1 and either Rz,T

m < Rz,T
m−1 +

% log n

λ3
n/(1 + λn)2

or κ = m

}
∧min

{
τm : m ≥ 1 and τm < Rz,T

m

}
∧min

{
σm : m ≥ 2 and σm ≤ Rz,T

m−1 + εn

}
.
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We consider the last minima for m ≥ 2 as we may not have control over the distance between
initial particle locations z0, . . . , zM . We expect the last two minimum to be large, because

after a birth of new particles from the particle µm at time Rz,T
m we expect some coalescence

among the parent particle and its children. After time εn particles get separated by a distance
O(ωn) and stay away from each other till the next birth event, when new particles are born in
the neighboring sites of a new parent particle and there can again be coalescence of particles
only within the new family.

Having defined {πm} and Tb, we now construct the branching random walk X̂ on [0, Tb)

and {(µ̂m, R̂z,T
m ) : R̂z,T

m ≤ Tb} with law as described in Section 2.5. Later we will show that

Tb > T with high probability, so that we can define X̂ on [0, T ]. The coupling of X and X̂ will

be through the definitions of {(πm, µm, Rz,T
m )} and also through the use of the paths of Xj

to define the corresponding paths of X̂j for suitable choices of the superscript j as described
below.

Our inductive construction begins by setting R̂z,T
0 = 0. If Rz,T

1 ≤ εn, then we set X̂j
s = Xj

s

for j ∈ J(Rz,T
1 −) and s ∈ (0, Rz,T

1 ), and the construction of X̂ on [0, Tb) is complete as

Tb = Rz,T
1 . Otherwise, let Ĵ(0) = J0(π0) and define X̂0 as in (2.24). Observe that

if Rz,T
1 > εn, then Ĵ(0) = J(εn) = J0(π0). (2.36) Jhat0

In that case, for s ∈ [0, Rz,T
1 ∧ Tb) we set X̂j

s = Xj
s for j ∈ Ĵ(0). Since Rz,T

1 > εn implies

Tb > εn and there is no coalescence in X during (εn, R
z,T
1 ∧ Tb), we can set

Ĵ(s) = Ĵ(0) ⊂ J(s) for s ∈ [0, Rz,T
1 ∧ Tb) so that Ĵ(s) = J(s) = J(εn) for s ∈ [εn, R

z,T
1 ∧ Tb).

If Rz,T
1 < Tb, then we set R̂z,T

1 = Rz,T
1 , µ̂1 = µ1 and Ĵ(Rz,T

1 ) = Ĵ(0) ∪ {M + j : j ∈ J0(π1)}.
At time R̂z,T

1 = Rz,T
1 , we set

X̂j

R̂z,T
1

=


Xj

R̂z,T
1 −

if j ∈ Ĵ(0)

Xj

Rz,T
1

if j ∈ Ĵ(Rz,T
1 ) \ Ĵ(0)

∞ otherwise.

Assume now that for some m ≥ 1, X̂ has been defined on [0, Rz,T
m ∧ Tb) with the property

that Rz,T
m < Tb implies

R̂z,T
k = Rz,T

k , µ̂k = µk, Ĵ(Rz,T
k ) = Ĵ(Rz,T

k−1) ∪ {M + `1 + · · ·+ `k−1 + j : j ∈ J0(πk) \ {0}},

Ĵ(Rz,T
k−1) = Ĵ(s) ⊂ J(s) for all s ∈ [Rz,T

k−1, R
z,T
k ), and

Ĵ(s) = J(s) = J(Rz,T
k−1 + εn) for all s ∈ [Rz,T

k−1 + εn, R
z,T
k ) (2.37) induct hyp

for 1 ≤ k ≤ m. The description after (2.36) explains that the above assumption is true for

m = 1. To extend the definition of X̂ on [Rz,T
m ∧Tb, Rz,T

m+1∧Tb) we may assume that Rz,T
m < Tb.

Then by our assumption, (2.37) holds for all 1 ≤ k ≤ m. At time R̂z,T
m = Rz,T

m we set

X̂j

R̂z,T
m

= X̂j

R̂z,T
m −

for j ∈ Ĵ(Rz,T
m−1) and X̂j

R̂z,T
m

= Xj

Rz,T
m

for j ∈ Ĵ(Rz,T
m ) \ Ĵ(Rz,T

m−1). (2.38) Xhat_Rm def

For s ∈ [Rz,T
m , Rz,T

m+1 ∧ Tb) and j ∈ Ĵ(Rz,T
m ), we set Ĵ(s) = Ĵ(Rz,T

m ) and X̂j
s = Xj

s . To verify
(2.37) for k = m+ 1 note that

Rz,T
m+1 < Tb implies Rz,T

m + εn < Rz,T
m+1 < Tb, (2.39) imply1
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as Rz,T
m+1 ≤ R

z,T
m + εn implies Tb ≤ Rz,T

m+1. So if Rz,T
m+1 < Tb, then for all s ∈ [Rz,T

m , Rz,T
m + εn],

Ĵ(s) = Ĵ(Rz,T
m ) = Ĵ(Rz,T

m−1) ∪ {M + `1 + · · ·+ `m−1 + j : j ∈ J0(πm) \ {0}}

= J(Rz,T
m−1 + εn) ∪ {M + `1 + · · ·+ `m−1 + j : j ∈ J0(πm) \ {0}}. (2.40)

The last two equalities follow from (2.37) by using s = Rz,T
m−1 + εn. Tb > Rz,T

m + εn also implies

τm ≥ Rz,T
m , so that there is no coalescence in X during [Rz,T

m−1 + εn, R
z,T
m ) making

J(Rz,T
m−1 + εn) = J(Rz,T

m −), (2.41) eq2

and the new particles born at time Rz,T
m do not land on existing particles, as no two of the

existing particles are neighbors. In addition, Rz,T
m+1 ∧ Tb > Rz,T

m + εn implies Rz,T
m+1 ∧ σm+1 >

Rz,T
m +εn ensuring that there is no birth of new particles during (Rz,T

m , Rz,T
m +εn] and particles

that can coalesce during [Rz,T
m , Rz,T

m + εn] are in {Xµm

Rz,T
m
, Y 1

m, . . . , Y
`m
m }. So using the definition

of πm in (2.30) and combining (2.40) and (2.41),

J(Rz,T
m + εn) = J(Rz,T

m −) ∪ {M + `1 + · · ·+ `m−1 + j : j ∈ J0(πm) \ {0}}
= Ĵ(s) for all s ∈ [Rz,T

m , Rz,T
m + εn].

Since τm+1 ≥ Rz,T
m+1 ∧ Tb, there is no coalescence for X during [Rz,T

m + εn, R
z,T
m+1 ∧ Tb) so

that J(s) = J(Rz,T
m + εn) for all s ∈ [Rz,T

m + εn, R
z,T
m+1 ∧ Tb). If Tb > Rz,T

m+1, we set R̂z,T
m+1 =

Rz,T
m+1, µ̂m+1 = µm+1 and use k = m + 1 in (2.37) to define Ĵ(Rz,T

m+1). This completes the

description of X̂ on [0, Rz,T
m+1 ∧ Tb) with the property in (2.37) for 1 ≤ k ≤ m+ 1.

Clearly µ̂m+1 is uniform over Ĵ(Rz,T
m+1−) = J(Rz,T

m + εn) (given πm), as all the particles

present at time s ≥ Rz,T
m + εn are equally likely to be the first to give birth, and it is

independent of {µ̂k : k ≤ m}. Also R̂z,T
m+1 − R̂z,T

m conditioned on FT
Rz,T

m
(and πm) has an

exponential distribution with mean [λ2
n|J(Rz,T

m + εn)|/(1 + λn)2]−1. Thus, X̂ behaves like the

branching random walk described in Section 2.5 on the interval [Rz,T
m , Rz,T

m+1 ∧ Tb).
Since Rz,T

m ↑ ∞ as m ↑, X̂ can be defined by induction on [0, Tb). The above arguments
and the inductive proof of (2.37) can be summarized as the following lemma.

F_m Lemma 2.5. For m ≥ 1, let

Fm :=

{
∧mk=1

(
Rz,T
k −Rz,T

k−1

)
>

% log n

λ3
n/(1 + λn)2

}
∩
{
∧mk=2

(
σk −Rz,T

k−1

)
> εn

}
∩
{
Rz,T
k ≤ τk for all 1 ≤ k ≤ m

}
∩ {κ > m}.

Then (a) Fm ⊂ {R̂z,T
m = Rz,T

m < Tb} and (b) (2.37) holds for all 1 ≤ k ≤ m.

Now we use the above coupling of X and X̂ to show that with high probability the com-
putation processes ζ and ζ̂ return the same value at time T given identical inputs at time 0.

Using the branching times Rz,T
m ,m ≥ 0, for the dual Xz,T , the events Fm described in Lemma

2.5 and N(z, T ) defined in (2.17) as ingredients, we define

F z
T := FN(z,T )+1 ∩

{
T 6∈ ∪N(z,T )

m=0 [Rz,T
m , Rz,T

m + εn]
}
. (2.42) F^z_T

The following lemma provides a necessary estimate for the probability of the event F z
T .

F^z_N Lemma 2.6. If log n � λn � n/(log n)η for some η > 0, then for any T > 0 and z =
(z0, . . . , zM ), supG+m∈Gn PGn,λn((F z

T )c) = o(1).
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Lemma 2.6 suggests that F z
T occurs with high probability when Gn ∈ Gn. On this event,

Ĵ(T ) = J(T ) and both computation processes will compute the same output.

zetacouple Lemma 2.7. On the event F z
T , ζ̂0(j) = ζ0(j) for all j ∈ Ĵ(T ) implies ζ̂T (i) = ζT (i) for all

i = 0, . . . ,M .

Specifically, if ζ̂0(j) = ξλn0 (Xj
T ) for all j ∈ J(T ), then Lemma 2.7 and (2.16) suggest that

on the event Ez
T ∩F z

T , ζ̂T (i) = ξλnT (zi) for all i = 0, . . . ,M . This observation will be crucial in
proving the Theorem 3.1 below.

Proof of Lemma 2.7. By the definition of FN(z,T )+1 ⊃ F z
T and Lemma 2.5,

Rz,T
N(z,T ) + εn < T < Rz,T

N(z,T )+1, and so

R̂z,T
m = Rz,T

m , µ̂m = µm for m ≤ N(z, T ), and k̂(s) = k(s) for s ∈ [0, T ].

As mentioned in Section 2.6, the inductive description of ζ̂ is the same as that of ζ with hats
added to the relevant notations. In view of the last display, it remains to verify that the
equivalence relations ∼t and ∼̂t are same. �

2.8. Proof of Lemma 2.6. We begin with estimating N(z, T ).

N_Tbd Lemma 2.8. Let z = (z0, . . . , zM ) and N(z, T ) be as in (2.17). Then PGn,λn(N(z, T ) > k) ≤
C2.8(M) exp(−c2.8(M,T )k) for some constants C2.8, c2.8 > 0.

Proof. Consider a Yule process which starts with r particles and each particle gives birth to
r new particles at rate 1. It is well known that if we let Gr,t be the law of the number of
particles in such a Yule process at time t, then Gr,t is r times Geometric with mean ert. So

Gr,t({k, k + 1, . . .}) = (1− e−rt)k/r. (2.43) cG_rt

Since each particle in the dual Xz,T give birth at rate ≤ 1 to at most r new particles at a
time and there are (M + 1) particles in the locations z0, . . . , zM at time 0, the total number
of particles at time T is stochastically dominated by Y1 + · · · + Yd(M+1)/re, where Yis are
i.i.d. with common distribution Gr,T . Now N(z, T ) > k implies that the number of particles
at time T is at least M + 1 + k, as at least one new particle are born at each birth time. So,
using (2.43)

PGn,λn(N(z, T ) > k) ≤ P

d(M+1)/re∑
i=1

Yi > M + 1 + k


≤ d(M + 1)/reP (Y1 > (M + 1 + k)/d(M + 1)/re)

= d(M + 1)/re
(
1− e−rT

)(M+1+k)/(rd(M+1)/re)
.

�

R_mbd Lemma 2.9. Let Rz,T
m .m ≥ 0, be the FTt -stopping times described in Section 2.3 and N(z, T )

be as in (2.17) for z = (z0, . . . , zM ). Then for % specified in (2.35) and large enough n,

sup
Gn∈Gn

PGn,λn

(
min

1≤m≤N(z,T )+1
Rz,T
m −Rz,T

m−1 ≤
% log n

λ3
n/(1 + λn)2

)
= o(1).
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Proof. It is easy to see that if Z has exponential distribution with mean 1, then Rz,T
m −Rz,T

m−1

stochastically dominates Z/[M + 1 + (m−1)r] for any m ≥ 1. This observation together with
the inequality P (Z ≤ z) = 1− e−z ≤ z and Lemma 2.8 imply that the reqired probability is

≤ PGn,λn(N(z, T ) ≥ k) +
k∑

m=1

PGn,λn

(
Z

M + 1 + (m− 1)r
≤ % log n

λ3
n/(1 + λn)2

)

≤ C2.8(M) exp(−c2.8(M,T )k) +
k∑

m=1

(M + 1 + (m− 1)r)
% log n

λ3
n/(1 + λn)2

≤ C2.8(M) exp(−c2.8(M,T )k) + [(M + 1)k + rk2/2]
% log n

λ3
n/(1 + λn)2

for any k ≥ 1. Replacing k by d[% log n/(λ3
n/(1 + λn)2)]−1/3e we get the desired bound. �

taubd Lemma 2.10. If log nλn � n/(log n)η for some η > 0. Then

sup
Gn∈Gn

PGn,λn

(
max

{
τm, R

z,T
m−1 +

% log n

λ3
n/(1 + λn)2

}
≤ Rz,T

m for some m ≤ N(z, T )

)
= o(1).

Proof. Observe that for any m ≥ 1,

PGn,λn

(
τm ∨ (Rz,T

m−1 + %(1 + λn)2 log n/λ3
n) < Rz,T

m |FTRz,T
m−1

)
≤ PGn,λn

(
Rz,T
m > Rz,T

m−1 + %(1 + λn)2 log n/λ3
n and ∃i, j ∈ J(Rz,T

m−1 + εn), i 6= j,

such that inf
Rz,T

m−1+εn≤s≤Rz,T
m

d(Xi
s, X

j
s ) ≤ ωn

∣∣∣∣∣FTRz,T
m−1

)
.

Now the condition for i and j in the above expression implies that i, j ∈ J(Rz,T
m−1) and Xi

s 6= Xj
s

for all s ∈ [Rz,T
m−1, R

z,T
m−1 + εn]. So the above is at most∑

i,j∈J(Rz,T
m−1),i 6=j

PGn,λn

(
Xi
s 6= Xj

s∀ s ∈
[
Rz,T
m−1, R

z,T
m−1 + εn

]
and d(Xi

s, X
j
s ) ≤ ωn

for some s ∈ [Rz,T
m−1 + εn, T ]

∣∣∣FT
Rz,T

m−1

)
. (2.44) taubdstep1

Noting that conditional on FT
Rz,T

m−1

,(
Xi
Rz,T

m−1+s
, Xj

Rz,T
m−1+s

)
d
= Ŝy

s , where y =

(
Xi
Rz,T

m−1

, Xj

Rz,T
m−1

)
,∀s ∈ T −Rz,T

m−1, (2.45) XScouple

we can use (2) of Proposition 5.5 to bound each of the summands in (2.44) by o(1). Hence the

sum in (2.44) is ≤ |J(Rz,T
m−1)|2o(1) ≤ (M + 1 + rm)2o(1). So considering whether N(z, T ) > k

or no, the probability of interest is

≤ PGn,λ+n(N(z, T ) > k) +

k∑
m=1

(M + 1 + rm)2o(1) = PGn,λ+n(N(z, T ) > k) + C(M)k3o(1).

Using Lemma 2.8 and replacing k by a quantity θn so that θn →∞ and θno(1)→ 0 as n→∞
we get the desired result. �
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sigma_mbd Lemma 2.11. If log n� λn � n/(log n)η for some η > 0, then

sup
Gn∈Gn

PGn,λn

({
σm ≤ Rz,T

m−1 + εn for some m ≤ N(z, T )
}
∩
{
τm > Rz,T

m ∀m ≤ N(z, T )
})

= o(1).

Proof. Note that on the event {τm′ > Rz,T
m′ for all 1 ≤ m′ ≤ m},

d
(
Xi
Rz,T

m
, Xj

Rz,T
m

)
≥

ωn ∀i, j ∈ J
(
Rz,T
m −

)
and i 6= j

ωn − 1 ∀i ∈ J
(
Rz,T
m −

)
\ {µm} and j ∈ J

(
Rz,T
m

)
\ J
(
Rz,T
m−

)
In view of (2.45), (1) of Proposition 5.5, and the bound |J(Rz,T

m −)| ≤ M + 1 + (m − 1), w
have

PGn,λn

({
σm+1 ≤ Rz,T

m + εn
}
∩
{
τm′ ≥ Rz,T

m′ ∀1 ≤ m
′ ≤ m

})
≤ 2[(M + 1 + (m− 1))2]o(1).

Finally imitating the argument which concludes :emma 2.10 we get the desired result. �

kappabd Lemma 2.12. If log n� λn � n/(log n)η for some η > 0, then

sup
Gn∈Gn

PGn,λn

(
{κ ≤ N(z, T )} ∩

{
min

1≤m≤N(z,T )+1
Rz,T
m −Rz,T

m−1 >
% log n

λ3
n/(1 + λn)2

})
= o(1).

Proof. First note that if Rz,T
m > Rz,T

m−1 +% log n(1 +λn)2/λ3
n and κ = m, then Xi

Rz,T
m
6∈ L0(Gn)

for some i ∈ J(Rz,T
m −) ⊂ J(Rz,T

m−1). For one such i ∈ J(Rz,T
m −) and m ≤ N(z, T ) if we let

y = Xi
Rz,T

m−1

, then using the couplings in (2.45) and Proposition 2.4

PGn,λn

({
Xi
Rz,T

m
6∈ L0(Gn)

}
∩
{
Rz,T
m > Rz,T

m−1 + % log n(1 + λn)2/λ3
n

})
≤ PGn,λn

 sup
Rz,T

m−1≤s≤R
z,T
m

d
(
Ŝys , S

λn,y
s

)
> (1/10) logr−1 n

+ PGn,λn

({
d
(
Sλn,y
Rz,T

m
, (L0(Gn))c

)
is at most (1/10) logr−1 n

}
∩
{
Rz,T
m > Rz,T

m−1 + % log n(1 + λn)2/λ3
n

})
. (2.46) kappa break

Using (1b) of Proposition 2.4 the first term in the right hand side of (2.46) is ≤ C2.4(T )n−3/10.
To bound the other term recall that

Sλn,y
Rz,T

m−1+s

d
=Sy

λ3ns/(1+λn)2
, so that dTV (L(Sλn,y

Rz,T
m−1+s

), U[n]) ≤ 1/n2∀s > % log n(1 + λn)2/λ3
n

by the choice of % in (2.35). Also by the definition of L0(Gn), U[n]({v : d(v, (L0(Gn))c) ≤
(1/10) logr−1 n}) ≤ C1

2.4n
4/5 · n1/10/n. This bound and the TV bound in the last display

imply that the second term in the right hand side of (2.46) is o(1). Once again imitating the
argument which concludes Lemma 2.10 we get the desired result. �

Proof of Lemma 2.6. It is easy to see that the conditional distribution of Rz,T
m − Rz,T

m−1 − s
given {Rz,T

m −Rz,T
m−1 > s} stochastically dominates an exponential random variable with mean

≥ (M + 1 + r(m− 1))−1. This observation and the inequality 1− e−x ≤ x imply

PGn,λn

(
T ∈

[
Rz,T
m , Rz,T

m + εn
])

= PGn,λn

(
Rz,T
m −Rz,T

m−1 ≤ T −R
z,T
m−1|R

z,T
m −Rz,T

m−1 ≥ T −R
z,T
m−1 − εn

)
≤ (M + 1 + rm)εn.
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Using the above estimate and considering whether N(z, T ) > k or not,

PGn,λn

(
T ∈ ∪N(z,T )

i=1

[
Rz,T
m , Rz,T

m + εn
])

≤ PGn,λn(N(z, T ) > k) +
k∑

m=1

(M + 1 + rm)εn ≤ PGn,λn(N(z, T ) > k) + C(M)k2εn. (2.47) break up2

Replacing k by ε
−1/3
n in the above estimate, using Lemma 2.8, and then combining with

Lemma 2.9, 2.10, 2.11 and 2.12 we get the desired result. �

3. ODE for the density of the two opinions

ode Lemma 3.1. u ∈ C1([0,∞)) satisfies u′t = k3ut(1 − ut)(1 − 2ut) and u0 = p ∈ (0, 1) if and
only if for any l > 0 it satisfies

ut =

∫ t

0
le−lh [(k3/l)uh(1− uh)(1− 2uh) + uh] dh+ pe−lt. (3.1) integeq

The common solutio is given by

ut =


1
2

[
1 +

(
1 + c(p)ek3t

)−1/2
]

if p ∈ (1/2, 1)

p if p = 0, 1, 1/2
1
2

[
1−

(
1 + c(p)ek3t

)−1/2
]

if p ∈ (1/2, 1)

, where c(p) = |p− 1/2|−2 − 1. (3.2) usol

Proof. If ut satisfies (??), then changing the variable w = t− h

ut = e−lt
∫ t

0
lelw [(k3/l)uw(1− uw)(1− 2uw) + uw] dw + pe−lt, which implies (3.3) alteq

u′t = e−lt
[
lelt {(k3/l)ut(1− ut)(1− 2ut) + ut}

]
− l[ut − pe−lt]− ple−lt = k3ut(1− ut)(1− 2ut)

and u0 = p. Conversely if ut satisfies the ODE u′t = k3ut(1 − ut)(1 − 2ut) and u0 = p, then
integrating by parts it is easy to verify that (3.3) holds, and hence (3.1) is satisfied. The
solution to the ODE is obtained by the method of partial fractions. �

density Theorem 3.1. Suppose log n � λn � n/(log n)η for some constant η > 0 and ξλnt be the

rescaled latent voter model on the random graph Gn having distribution P̃ such that ξλn0 satisfies

(1/n)
∑

v∈[n] PGn,λn(ξλn0 (v) = 0) = p ∈ (0, 1). Let u(·) be the solution (as in (3.2)) of the ODE

u′(t) = k3u(t)(1− u(t))(1− 2u(t)), u(0) = p, (3.4) odeeq

where k3 = k3(r) is the probability that three random walks starting from three neighboring
vertices of the infinite homogeneous r-tree never hit each other. Then for any fixed 0 < T <∞
and Gn as in (2.4)

sup
0≤s≤T

∣∣∣∣∣∣ 1n
∑
z∈[n]

PGn,λn

(
ξλns (z) = 0

)
− u(s)

∣∣∣∣∣∣→ 0 as n→∞ uniformly in Gn ∈ Gn.

Proof. For z ∈ [n] and the events Ezs , F
z
s defined in (2.18) and (2.42) let

EF zs := Ezs ∩ F zs , uGn
s (z) := PGn,λn

(
ξλns (z) = 0

)
, ūGn

s :=
1

n

∑
z∈[n]

uGn
s (z).
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By Lemma 2.3 and 2.6 sup0<s<T supx∈[n] PGn,λn(EF zs ) = o(1). We also need the ingredients

pni := ΞM`,βωn
(|π| = i), 1 ≤ i ≤ r + 1, where ΞM`,βωn

is the law on ∪ri=1 Πi (3.5) p^n_kdef

as described in Section 2.5, and recall from (2.22) that

ki := lim
n→∞

pni = Ξ∞(|π| = i) exists and ki =

{
> 0 for i = 1, 2, 3

= 0 otherwise
. (3.6) fk_i

Now in view of (2.16) and Lemma 2.7 if EF zs occurs, then

(a)R̂z,s1 > δn :=
% log n

λ3
n/(1 + λn)2

, (b) all branching sites of X̂z,s
t , t ∈ [0, s], are in L0(Gn)

(c)ζ̂0(j) = ξλn0

(
Xz,s,j
s

)
for all j ∈ J(s) imply ξλnt (z) = ζ̂t(i) for all i ∈ J(s− t), t ∈ [0, s],

and in particular ξλns (z) = ζ̂s(0). (3.7) EFgoodevent

Thinning of Poisson process suggest that if R is the first time when new particles are added
in X̂z,s, then R has exponential distribution with rate (1− pn1 )λ2

n/(1 + λn)2.
If EF zs occurs and R ≤ s, then R must be in [δn, s] by (a) of (3.7), and k new particle will

be born at time R with probability pnk+1/(1− pn1 ) (defined in (3.5)). So using the update rule

in (2.26) and the fact that different particles in X̂z,s move independently,

PGn,λn

({
ξλns (z) = 0

}
∩ EF zs ∩ {R ∈ [δn, s]}

∣∣∣R)
= 1{δn≤R≤s}

r∑
k=1

pnk+1

1− pn1

[
PGn,λn

({
ζ̂s−R(0) = 0 and ζ̂s−R(i) = 0, i = 1, . . . , k

}
∩ EF zs

)
+ PGn,λn

({
ζ̂s−R(0) = 1 and ζ̂s−R(i) = 0 for at least onei = 1, . . . , k

}
∩ EF zs

)]
= 1{δn≤R≤s}

r∑
k=1

pnk+1

1− pn1

[
PGn,λn

({
ζ̂s−R(0) = 0

}
∩ EF zs

)
·

k∏
i=1

PGn,λn

({
ζ̂s−R(i) = 0

}
∩ EF zs

)
+ PGn,λn

({
ζ̂s−R(0) = 1

}
∩ EF zs

)
·{

1−
k∏
i=1

PGn,λn

({
ζ̂s−R(i) = 1

}
∩ EF zs

)}]
+ o(1). (3.8) fRbreakup

The o(1) term arises because of ignoring some power of PGn,λn(EF zs ) which would appear in

the last step above. On the event EF zs ∩ {R < s}, ζ̂s−R(i) = ξλns−R(X̂z,s,i
R ) by (3.7). Also

the branching site X̂z,s,0
R

d
= ŜzR and the locations of the new particles X̂z,s,i

R
d
=Vi

R described in

(1c) of Proposition 2.4. By our choice of % in (2.35), dTV (L(ŜzR), U[n]) ≤ 1/n2 on {R ≥ δn}.
Combining the last three observations and using (1c) of Proposition 2.4∣∣∣PGn,λn

({
ζ̂s−R(0) = 0

}
∩ EF zs

)
− ūGn

s−R

∣∣∣ =
∣∣∣PGn,λn

({
ξλns−R(ŜzR) = 0

}
∩ EF zs

)
− ūGn

s−R

∣∣∣
=
∣∣∣PGn,λn

(
ξλns−R(ŜzR) = 0

)
− ūGn

s−R

∣∣∣+ o(1) ≤ dTV
(
L
(
ŜzR

)
, U[n]

)
+ o(1) = o(1)
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on the event {R ≥ δn}. Similarly for any i ∈ {1, . . . , r},
∣∣∣PGn,λn

({
ζ̂s−R(i) = 0

}
∩ EF zs

)
− ūGn

s−R

∣∣∣ =

o(1) on the event {R ≥ δn}. Hence we can rewrite the right hand side of (3.8) to have

PGn,λn

({
ξλns (z) = 0

}
∩ EF zs ∩ {R ∈ [δn, s]}

∣∣R)
= 1{δn≤R≤s}

∑r
k=1

pnk+1

1−pn1

[(
ūGn
s−R

)k+1
+
(

1− ūGn
s−R

){
1−

(
1− ūGn

s−R

)k}]
+ o(1). (3.9)

On the other hand if EF z2 occurs and R > s, then using independence of ξλn0 and the
ingredients for the graphical representation for the interval (0, s],

PGn,λn

({
ξλns (z) = 0

}
∩ EF zs ∩ {R > s}

)
= P (ξλn0 (X̂z,s,0

s ) = 0)PGn,λn (∩EF zs ∩ {R > s}) .

Recalling that dTV (L(Xz,s,0
t ), U[n]) ≤ 1/n2 for all t ≥ δn, (a) of (3.7) and the property of ξλn0

in our hypothesis suggest that the above is

(p+ o(1))PGn,λn (EF zs ∩ {R > s}) = p exp(−(1− pn1 )s) + o(1). (3.10) nohit

Putting (3.6), (3.9) and (3.10) together, using the distribution of R and noting that δn → 0,

uGn
s (z) =

∫ s

δn

(1− pn1 ) exp(−(1− pn1 )s′)
r∑

k=1

pnk+1

1− pn1

[
(ūGn
s−s′)

k+1

+ (1− ūGn
s−s′){1− (1− ūGn

s−s′)
k}
]
ds′ + p exp(−(1− pn)s) + o(1)

=

∫ s

0
(1− k1)e−(1−k1)s′

[
k2

1− k1
ūGn
s−s′ +

k3
1− k1

{(
ūGn
s−s′

)3

+
(

1− ūGn
s−s′

)(
2ūGn

s−s′ −
(
ūGn
s−s′

)2
)}]

ds′ + pe−(1−k1)s + o(1).

As the o(1) term above doesn’t depend on z, we can replace uGn
s (z) by ūGn

s in the above
equality. Since k1 + k2 + k3 = 1, we write (1− k3/(1− k1)) in place of k2/(1− k1) and do a little
arithmetic to conclude

ūGn
s =

∫ s

0
(1− k1)e−(1−k1)s′

[
k3

1− k1
ūGn
s−s′

(
1− ūGn

s−s′
)(

1− 2ūGn
s−s′

)
+ ūGn

s−s′

]
ds′

+ pe−(1−k1)s + o(1).

Now if ut satisfies (3.4), then Lemma 3.1 suggests that ut also satisfies

us =

∫ s

0
(1− k1)e−(1−k1)s′

[
k3

1− k1
us−s′ (1− us−s′) (1− 2us−s′) + us−s′

]
ds′ + pe−(1−k1)s.

Combining last two displays and noting that the Lipschitz constant for the polynomial (k3/(1−
k1))u(1− u)(1− 2u) + u on the interval [0, 1] is 1 + k3/(1− k1),∣∣ūGn

s − us
∣∣ ≤ o(1) +

(
1 +

k3
1− k1

)∫ s

0

∣∣∣ūGn
s−h − us−h

∣∣∣ (1− k1)e−(1−k1)h dh

Using standard argument (e.g.,Lemma 3.3 in [1]) the above implies∣∣ūGn
s − us

∣∣ ≤ o(1)
∞∑
k=0

F ∗k(s) = o(1)ek3s, where

F ∗k is kth convolution of F (s) = (1 − k1 + k3)e−(1−k1)s1{s>0}. Finally noting that the o(1)
term works for any s ∈ [0, T ], the desired result follows. �
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4. Lower bound for consensus time

In order to infer about the consensus time we need to estimate the correlation among the
states of different vertices. In this section, our goal is to establish the fact that dual processes
starting from distant vertices do not collide with high probability, so that their states are
asymptotically uncorrelated. We call the particles in the dual process Xy,T members of a
y-family.

allcolide1 Proposition 4.1. Let Gn ∈ Gn and log n � λn � n/(log n)η for some η > 0. There is a
constant $0 > 0 (as in Proposition 5.5) such that if 1 < K < K ′ and yi ∈ [n], i ∈ [K ′], satisfy
d(yi, yj) ≥ (1/$0) logr−1(n/λn) for all i ∈ [K], j ∈ [K ′] and i 6= j, then for any fixed a, T > 0,

PGn,λn

(
∩i∈[K] ∪j∈[K′],j 6=i {yi-family comes within distance a of yj-family before time T }

)
≤ c4.1(n/λn)−

√
Kρ4.1/$0 for some positive constants c4.1 = c4.1(K, a), ρ4.1 = ρ4.1(η, T ).

Proof. We prove the result for a = 0 only, as the other cases are similar. For notational
convenience, we also assume without loss of generality that yi = i.

Let $o, ρ be as in Proposition 5.5 and ωn = (1/$0) logr−1(n/λn). We write K′ for [K ′]\[K]

and associate a forest F on the node set [K]∪{K′} with the coalescence structure of X
[K′]
t , 0 ≤

t ≤ T as follows. Whenever i-family collides with j-family for some 1 ≤ i < j ≤ K or j = K′,
we put an oriented edge j _ i in F, merge the two families and declare i to be the family
head. A node with no outgoing edge is the root of the component containing it. The event of
our interest implies that number of components in F is at most K/2 + 1. We will present the
proof in two steps.
Step 1. First we will show that for any distinct fis

PGn,λn(f1, . . . , fk _ 1 in F) ≤ (r − 1)−kρωn/12 for some ρ > 0 (4.1) collidebd3

and for large enough n. For s = (s1, . . . , sk) let H(s) denotes the joint distribution of the
hitting times of the families with family heads 1, f1, . . . , fk and let w = (w1, . . . , wk) ∈ [n]k

be the locations of the coalescence. Also let f = (f1, . . . , fk) be the permutation of (f1, . . . , fk)
corresponding to the order in which coalescence occurs and lj ∈ J fj (sj−),mj ∈ J1(sj), 1 ≤
j ≤ k, be the (random) indices of the members of the two families respectively which coalesce
at time sj . Then

PGn,λn(f1, f2, . . . fk _ 1 in F) ≤
∑

f∈Perm(f)

∫
0<s1<···<sk<T

H(ds)
∑

w∈[n]k

PGn,λn

(
X

fj ,T,lj
sj = wj

= X
1,T,mj
sj and X

fj ,T,l
s 6= Xi,T,l′

s if fj 6= i, s < sj

)
. (4.2) col break

We write Dj = D(fj , ωn/6), divide [n]k into 2k groups depending on whether wj ∈ Dj or not
and use independence until collision’ property of the dual processes to bound the inner sum
in the last display by∑

b∈{0,1}k

∑
w:wj∈(1−bj)Dj+bjDc

j

PGn,λn

(
∩kj=1

{
X

1,T,mj
sj = wj

}) k∏
j=1

PGn,λn

(
X

fj ,T,lj
sj = wj

)
. (4.3) collidebd1

If wj ∈ Dc
j , then Lemma 2.8 and the second assertion of (1) of Proposition 5.5 imply that for

a suitable choice of c

PGn,λn

(
X

fj ,T,lj
s = wj

)
≤ PGn,λn(|J fj (sj)| > cωn) + cωn(r − 1)−ρωn/6 ≤ (r − 1)−ρωn/8.
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Using this bound, writing |b| =
∑

j bj and summing over all wj ∈ Dc
j such that bj = 1 the

inner sum in (4.3) is

≤ (r − 1)−|b|ρωn/8
∑

wj∈Dj :bj=0

∏
j:bj=0

PGn,λn

(
X

fj ,T,lj
sj = wj

)
PGn,λn

(
∩j:bj=0

{
X

1,T,mj
sj = wj

})
(4.4) collidebd2

Now we want to estimate the last term of (4.4). It is easy to see that the particle X
1,T,mj
sj

originates from {1, f1, . . . , fj−1}. d(fj , fi), d(fj , 1) ≥ ωn for all i < j. For any choice of vertices

wj ∈ Dj , j ∈ {j : bj = 0}, and indicesmj , j ∈ {j : bj = 0}, X1,T,mj
sj = wj implies either starting

above ωn/3 the distance between fj and the particle at X
1,T,mj
sj reduces to ωn/6 (when the

particle is born outside D(fj , ωn/3)), or starting above 2ωn/3 the distance between fj and the

parent (with index mi for some i < j) of the particle at X
1,T,mj
sj reduces to ωn/3. Hence the

Markov property of PGn,λn and repeated application of the second assertion of Proposition 5.5

imply that for any (wj ∈ Dj : bj = 0), PGn,λn

(
∩j:bj=0

{
X

1,T,mj
sj = wj

})
≤ (r−1)−(k−|b|)ρωn/3.

Combining this with the fact that the number of possible values of mj is ≤ j · cωn. on the

event {|J fj
sj | ≤ cωn} and using Lemma 2.8, the last term of (4.4) is

PGn,λn

(
∩j:bj=0

{
X

1,T,mj
sj = wj

})
≤ PGn,λn

(
∪kj=1

{
|Jfj (sj−)| > cωn

})
+
∏
j:bj=0

(jcωn)(r − 1)−(k−|b|)ρωn/3 ≤ (r − 1)−(k−|b|)ρωn/8.

for a suitable choice of c. Using this bound the expression in (4.4) is ≤ (r − 1)−kρωn/8.
Therefore, considering all possible choices of b in (4.3) and f in (4.2) we get

PGn,λn(f1, f2, . . . , fk _ 1 in F ) ≤ k!2k(r − 1)−kρωn/8 ≤ (r − 1)−kρωn/12 (4.5) allto1

for large enough n.
Step 2. The bound in (4.1) and the ‘independence until coalescence’ property of the dual
processes imply that if i and j are either from different components or from same component
but have equal oriented distance from the root, then

PGn,λn({i1, . . . , ik _ i in F } ∩ {j1, . . . , jl _ j in F }) ≤ (r − 1)−(k+l)ρωn/12. (4.6) collidebd4

Also if f1 _ f2 _ · · · _ fk _ 1 is an oriented path in F, then we can interchange the roles
of the indices 1 and f1 to have f1 _ 1, . . . , fk _ 1 in the new labeling. Thus

PGn,λn(f1 _ 1, . . . , fk _ 1 in F) ≤ (r − 1)−kρωn/12. (4.7) collidebd5

Now note that if the tree component containing 1 is F, then either there are at least
d
√
|F| − 1e nodes in F at equal distance from the root or there is an oriented path in F of

length at least d
√
|F| − 1e. So using the bounds in (4.6) and (4.7)

PGn,λn(F is the component containing 1) ≤ 2(r − 1)−
√
|F|−1ρωn/12.

The above estimate together with (4.6) and the inequality
∑

i

√
xi >

√∑
i xi implies

PGn,λn(F1, . . . ,FL are the tree components of F)

≤ 2(r − 1)−
∑L

i=1

√
|Fi|−1ρωn/12 ≤ 2(r − 1)−

√
K+1−Lρωn/12, which in turn implies

PGn,λn(F has at most K/2 + 1 components) ≤ c(K)(r − 1)−
√

(K+1)−(K/2+1)ρωn/12,
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where c(K) is twice the number of forests on the node set [K] ∪ {K′} with at most K/2 + 1
components. This completes the proof. �

Next we use the estimate in Proposition 4.1 to obtain the following large deviation estimate
for the number of individuals with opinion 0 at time T .

momentbd Lemma 4.2. Let log n� λn � n/(log n)η for some η > 0 and ξλnt = {v ∈ [n] : ξλnt (v) = 0}.
Then for any k ≥ 1 and δ > 0 there are constants C4.2(k, δ), ρ4.2(η, T ) so that for large enough
n,

PGn,λn

(
sup

0≤s≤T

∣∣∣|ξλns | − EGn,λn |ξλns |
∣∣∣ > δn

)
≤ C4.2(n/λn)−

√
kρ4.2

Proof. Let ωn be as in the proof of Proposition 4.1. For I ⊂ [n], we say that i ∈ I is a ‘good
element’ of I if mini 6=i′∈I d(i, i′) is not less than ωn, otherwise we call it a ‘bad element’ for
I. Define

W := {(i1, . . . , i2k) ∈ [n]2k : at least k many indices of {i1, . . . , i2k} are good for it}.

Now let Yv,s be the indicator of the event {ξλns (v) = 0} minus its mean under PGn,λn and

Un,s :=
∑

v∈[n] Yv,s. We estimate the even moments of Un. Noting that U2k
n =

∑
i1,...,i2k∈[n] Yi1,s · · ·Yi2k,s

and |Yij ,s| ≤ 1,

EGn,λnU
2k
n,s ≤ |W c|+

∑
i1,...,i2k∈W

EGn,λn [Yi1,s · · ·Yi2k,s] . (4.8) moment break

To bound |W c| note that |W c| =
∑k−1

l=0 |Wl|, whereWl := {(i1, . . . , i2k) : {i1, . . . , i2k} has l good indices}.
To bound |Wl| observe that l many good indices can be chosen in at most nl ways and 2k− l
bad indices can be chosen in at most [n · r(r − 1)ωn−1](2k−l)/2 ways, as the worst situation is
to have (2k− l)/2 pairs of indices such that the distance between two vertices of any pair is at
most ωn. Since the number of permutations of the elements in {i1, . . . , i2k} is at most (2k)!,

|W c| ≤ (2k)!

k−1∑
l=0

nl+(2k−l)(1+1/$0)/2 ≤ k · (2k)!nk(3/2+1/2$0). (4.9) bad summands bd

The next step is to bound the summands in (4.8) for (i1, . . . , i2k) ∈W . For i = (i1, . . . , i2k) ∈
W we assume (without loss of generality) that i1, . . . , ik are good elements for {i1, . . . , i2k},
write i′ := {ik+1, . . . , i2k} and i1 ≺ · · · ≺ ik ≺ i′. We associate independent copies of the

graphical representation to i1, . . . , ik, i
′. Based on them we construct X̃i1,T , . . . , X̃ik,T , X̃i′,T

so that their laws are as described in Section 2.3. Let Ỹil,s be the analogue of Yil,s associated

with the graphical representation for il. Now we construct Xi,T as follows. Initially we have
k+1 families with family heads i1, . . . , ik, i

′. Members of each family follow the graphical rep-
resentation corresponding to the family head, but whenever two members with family heads
j ≺ j′ come within distance 3, we merge the two families and declare j to be the new family
head. By the above construction, Yil,s = Ỹil,s if the members in il-family do not come within
distance 3 of some member from other families. Now if we let

Ej := {ij-family comes within distance 3 of some other family before time s},E := ∩kj=1Ej ,

then it is easy to see that there is a random variable Rj , which is independent of Ỹij ,s, so

that Yi1,s · · ·Yi2k,s1Ec
j

= Ỹij ,sRj1Ec
j
. Ỹij ,s is also independent of the events El, 1 ≤ l ≤ k, and
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EGn,λn Ỹij ,s = 0. Hence

EGn,λn [Yi1,s · · ·Yi2k,s1Ec ] =

k∑
j=1

EGn,λn

[
Ỹij ,s ·Rj 1Ec

j\∪
j−1
l=1 E

c
l

]
= 0.

The above estimate together with the fact |Ỹij ,s| ≤ 1 implies

|EGn,λn [Yi1,s · · ·Yi2k,s]| ≤ PGn,λn(E) for all (i1, . . . , i2k) ∈W. (4.10) productbd

Combining (4.8), (4.9) and (4.10) and using Proposition 4.1 to estimate PGn,λn(E),

sup
0≤s≤T

EGn,λnU
2k
n,s ≤ k(2k)!n3k/2+1/2$0 + n2kc4.1(n/λn)−

√
kρ4.1/$0 ≤ 2n2kc4.1(n/λn)−

√
kρ4.1/$0 .

The above estimate along with Markov inequality

PGn,λn

(
sup

0≤s≤T

∣∣∣|ξλns | − EGn,λn |ξλns |
∣∣∣ > δn

)
≤ (δn)−2kEGn,λn

(
sup

0≤s≤T
U2k
n,s

)
gives the desired result for C4.2 = 2c4.1δ

−2k and ρ4.2 = ρ4.1/$0. �

main Theorem 4.1. Suppose log n � λn � n/(log n)η for some η > 0. Let {ξt : t ≥ 0} be the

latent voter model with parameter λn on the random r-regular graph having distribution P̃
such that ξ0 has product measure on {0, 1}[n] with P (ξ0(v) = 0) = p ∈ (0, 1). There is a

good set of graphs Gn with P̃(Gn ∈ Gn) → 1 so that if n is large and Gn ∈ Gn, then for any
δ ∈ (0, 1/2), b <∞ and for some constants T = T (δ, p), T ′′ = T ′′(δ), C4.1(b, δ) > 0,

PGn,λn

(
1

n
|ξs| 6∈ [1/2− δ, 1/2 + δ] for some s ∈ [λnT, λnT + n(n/λn)bT ′′]

)
≤ C4.1(n/λn)−b.

Proof. Let ξλnt = ξλnt, Gn be as in (2.4) and u(·) be as in (3.2) with u(0) = p and choose T large

enough so that |u(T )− 1/2| ≤ δ/16. Then we invoke Theorem 3.1 to have |(1/n)EGn,λnξ
λn
T −

(1/2)| ≤ δ/8 for large enough n. Combining the above estimate with Lemma 4.2

PGn,λn

(∣∣∣∣ 1n ∣∣∣ξλnT ∣∣∣− 1/2

∣∣∣∣ > δ/4

)
≤ C4.2(n/λn)−

√
kρ4.2(η,T ) (4.11) consensusbd1

for any k ∈ N and large enough n. Now let Θ0 = T and for i ≥ 1,

Πi := inf

{
t > Θi−1 :

1

n

∣∣∣ξλnt ∣∣∣ ∈ {1/2− δ/2, 1/2 + δ/2}
}
,

Θi := inf

{
t > Πi :

1

n

∣∣∣ξλnt ∣∣∣ ∈ {1/2− δ/4, 1/2 + δ/4, 1/2− δ, 1/2 + δ}
}
.

Also let ũ(·) be a solution of the ODE in (3.1) with initial value ũ(0) ∈ {1/2 − δ/2, 1/2 +
δ/2}, and T ′, T ′′ be such that |ũ(T ′) − 1/2| = δ/16 and |ũ(T ′′) − 1/2| = 15δ/32. A little

algebra shows that Πi + T ′′ ≤ Θi and (1/n)|ξλnΘi
| ∈ {1/2 − δ/4, 1/2 + δ/4} if ||ξλnΠi+s

|/n −
ũ(s)| ≤ 3δ/16 for all s ∈ [0, T ′]. Now using Markov property of PGn,λn and Theorem 3.1,

sup0≤s≤T ′ |(1/n)EGn,λnξ
λn
Πi+s

− ũ(s)| ≤ δ/16 for large enough n, and applying Lemma 4.2

PGn,λn

(
Θi ≤ Πi + T ′′ or (1/n)|ξλnΘi

| 6∈ {1/2− δ/4, 1/2 + δ/4}
)

≤PGn,λn

(∣∣∣∣ 1n |ξλnΠi+s
| − ũ(s)

∣∣∣∣ > 3δ/16 for some s ∈ [0, T ′]

)
≤ C4.2(n/λn)−

√
kρ4.2(η,T ′) (4.12) consensusbd2

for any k ∈ N.
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Noting that if |ξλns |/n 6∈ {1/2 − δ, 1/2 + δ} for some s ∈ [T, T + T ′′(n/ ambdan)b], then
either the event of (4.11) occurs, or the event in the left hand side of (4.12) occurs for some
i ≤ (n/λn)b. So if we choose k and C4.1 so that the estimates in (4.11) and (4.12) are at most
C4.1n

−b/2 and C4.1n
−2b/2 respectively, the proof is complete by taking union bound of the

above events. �

5. Random walk estimates

In this section, we study some hitting times involving two random walks on Gv,d(1/5) logr−1 ne.

We begin with some simple random walks on Z+, which will be useful in what follows.

Deltalemma Lemma 5.1. Suppose ∆1,∆2, . . . are i.i.d. with P (∆1 = −1) = 1/r = 1−P (∆1 = 1). There
is a function α1(r, γ) ≥ 1, which is nonincreasing in the second argument, such that if k ≥ α1,
then

P

(
km∑
i=11

∆i < m/γ

)
≤ (r − 1)−m/γ .

Proof. (1) If we let I∆(x) := supθ∈R{θx − log(Eeθ∆1)} be the large deviation rate function,
then I∆((r−2)/r) = 0, I∆(0) > 0 and I∆(·) is a decreasing continuous function on [0, (r−2)/r],
as E∆1 = (r − 2)/r. Let

α1(r, γ) := inf{k ≥ 1 : log(r − 1)/γk ≤ I∆(1/γk)} so that
r

γ(r − 2)
< α1 <∞.

For any k ≥ α1 we use the standard large deviation argument to get the required estimate.
As I∆(1/γk) and 1/γk are increasing and decreasing functions of γ, α1 is decreasing in γ.

(2) It follows by using the optional stopping theorem for the martingale (r − 1)−
∑m

i=1 ∆i and
the stopping time T∆

−l ∧ T∆
l′ . �

We will now analyze some hitting times of a simple random walk on a certain finite graph.
Recall the definitions in (2.2) and (2.3), and assume that v ∈ L1(Gn). Also let {S̄m =
(S̄1
m, S̄

2
m) : m ≥ 0} be the standard discrete time coalescing random walk system of two

particles, where at each step one of the particles is chosen at random and is allowed to jump
to a uniform neighbor until they coalesce, and after coalescence they say put with probability
1/2 and jump to an uniform neighbor otherwise. Note that for i = 1, 2, {S̄im : m ≥ 0} is a
lazy simple random walk. Here we will study the associated hitting times

T̄ i := inf{m ≥ 0 : d(v, S̄im) = d(1/5) logr−1 ne}, T̄$ := inf{m ≥ 0 : d(S̄1
m, S̄

2
m) = d$e} for $ ≥ 0.

(5.1) Tbar

For notational convenience we say that

v is a midpoint of (u1, u2) if (i) d(u1, v) = bd(u1, u2)/2c and (ii) d(u2, v) = dd(u1, u2)/2e.
(5.2) midpoint

Tbar est Proposition 5.2. Let {S̄m : m ≥ 0} be the random walk (as described above) such that S̄0

v ∈ L1(Gn) is a midpoint of S̄0 in the sense of (5.2).

(1) For any γ, a, b > 0 there is a constant α = α(r, γ, a, b) > 0 such that if K and {υn}
satisfy (i) K ≥ α (ii) υn →∞ as n→∞ (iii) d(S̄1

0 , S̄
2
0) = dϑυne for some ϑ ≥ b and

[ϑ/2 +K]υn ≤ (1/5) logr−1 n, then

P (T̄(ϑ+a)υn < T̄(ϑ−b)υn ∧ dKυne) ≥ 1− 6(r − 1)−υn/γ − (r − 1)1−bυn − (r − 1)−(a∧b)υn ,
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(2) For any γ > 0 there is a constant α̃ = α̃(r, γ) ≥ 2 such that if K and {υn} satisfy
(i) K ≥ α̃ (ii) υn → ∞ as n → ∞ and (iii) (3K + 1/γ)υn ≤ (2/5) logr−1 n, and (iv)
d(S̄1

0 , S̄
2
0) ≤ (K + 1/γ)υn, then

P
({
d
(
S̄1
dKυne, S̄

2
dKυne

)
< υn/γ

}
∩ {T̄0 > dKυne}

)
≤ 7(r − 1)−υn/γ .

Proof of Proposition 5.2 for v ∈ L1(Gn) \ L0(Gn). (1) v ∈ L0(Gn) implies thatGv,d(1/5) logr−1 ne
is a finite r-tree. Let

α(r, γ, a, b) := α1(r, 1/a), where α1 is defined in Lemma 5.1, and

T̄ := T̄(ϑ−b)υn ∧ T̄(ϑ+b)υn ∧ dKυne.

We begin by estimating the probability P (T̄ = dKυne). Observe that until time T̄0 ∧ T̄ 1 ∧
T̄ 2, {d(S̄1

m, S̄
2
m) : m ≥ 0} is a random walk on Z+ with i.i.d. increments having common

distribution same as that of ∆1 of Lemma 5.1. Also T̄ 1∧T̄ 2 ≥ Kυn, because for any m ≤ Kυn,

d(v, S̄im) ≤ d(v, S̄i0) +Kυn ≤ ϑυn/2 +Kυn ≤ (1/5) logr−1 n by (iii) and (iv).

So T̄ = dKυne implies that the increment of the above random walk after dKυne many steps
is at most aυn. Since K ≥ α1(r, 1/a) by (i), Lemma 5.1 implies

P (T̄ = dKυn) ≤ P

dKυne∑
i=1

∆i ≤ aυn

 ≤ (r − 1)−aυn . (5.3) Hit bd4

Next we need to bound P (T̄ = T̄(ϑ−b)υn). Applying the optional stopping theorem for the

stopping time T̄ and the martingale M̄m∧dKυne∧T̄0 , where M̄m := (r − 1)−d(S̄1
m,S̄

2
m),

(r − 1)−ϑυn = EM̄0 = EM̄T̄ ≥ (r − 1)−(ϑ−b)υnP (T̄ = T̄(ϑ−b)υn)

+(r − 1)−(ϑ+a)υn [1− P (T̄ = T̄(ϑ−b)υn)].

Rearranging the above inequality,

P (T̄ = T̄(ϑ−b)υn) ≤ (r − 1)−ϑυn − (r − 1)−(ϑ+a)υn

(r − 1)−(ϑ−b)υn − (r − 1)−(ϑ+a)υn
≤ (r − 1)−bυn . (5.4) Hit bd6

Combining (5.3) and (5.4) avd noting that T̄(ϑ+a)υn ≥ T̄(ϑ−b)υn ∧ dKυne implies either T̄ =

T̄(ϑ−b)υn or T̄ = dKυne, the proof of (1) is complete.

(2) Note that d(v, S̄1
0), d(v, S̄2

0) ≤ d(S̄1
0 , S̄

2
0)/2 which is in turn ≤ (1/5) logr−1 n−Kυn by our

hypothesis. This ensures that T̄ 1∧ T̄ 2 ≥ Kυn. So using similar argument which leads to (5.3)
and letting α̃(r, γ) := α1(r, γ), where α1 is defined in Lemma 5.1, we have

P

({
d
(
S̄1
dKυne, S̄

2
dKυne

)
<
υn
γ

}
∩ {T̄0 > dKυne}

)
≤ P

dKυne∑
i=1

∆i <
υn
γ

 ≤ (r − 1)−υn/γ .

�

For v ∈ L1(Gn) \L0(Gn) we need some additional machinery to prove Proposition 5.2. Let

Lv be the subset of D(v, d(1/5) logr−1 ne) consisting of the vertices in the loop, and (5.5) bLdef

pv(u) ∈ Lv be the vertex in the loop nearest to u ∈ D(v, d(1/5) logr−1 ne).

We need to study {d(S̄im, p(S̄im)) : m ≥ 0}. Note that until S̄im hits the boundary of the graph
Gv,d(1/5) logr−1 ne, {d(S̄im, p(S̄im)) : m ≥ 0} is a lazy asymmetric random walk on Z+ with a
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little different behavior when it hits 0. Let {S̃m : m ≥ 0} be a discrete time asymmetric
random walk on Z+ having step distribution same as that of d(S̄im, p(S̄im)), i.e.,

P (S̃m+1 = 0|S̃m = 0) = 1/2 + 2/2r = 1− P (S̃m+1 = 1|S̃m = 0)

and for k ≥ 1, P (S̃m+1 = k′|S̃m = k) =


1/2 if k′ = k

1/2r if k′ = k − 1

(r − 1)/2r if k′ = k + 1

(5.6) asymRW

The following facts about this random walk will be required in what follows.

Hitting time Lemma 5.3. Let {S̃m : m ≥ 0} be a discrete time simple random walk with transitions as in

(5.6), and Υ = inf{m ≥ 0 : S̃m = 0}.
(1) Then P (Υ <∞|S̃0 = 1) = 1/(r − 1).

(2) Moreover, if Υ̃1, Υ̃2, . . . are iid with common distribution given by P (Υ̃1 = ·) = P (Υ =

·|Υ <∞, S̃0 = 1), then for any γ > 0 there is a constant α2(r, γ) > 2r/γ(r − 2) such
that

P (Υ̃1 + · · ·+ Υ̃k/γ > α2(r, γ)k) ≤ (r − 1)−k/γ .

Proof. Let ϕΥ(θ) = E[exp(θΥ1{Υ<∞}|S̃0 = 1)]. Conditioning on S̃1 and solving the resulting
quadratic equation and ignoring the impossible root,

ϕΥ(θ) =
1− eθ/2−

√
(1− eθ/2)2 − (r − 1)e2θ/r2

(r − 1)eθ/r
for θ < log(r/[r/2 +

√
r − 1]).

Clearly P (Υ < ∞|S̃0 = 1) = limθ↑0 ϕΥ(θ) = 1/(r − 1). Hence if ϕΥ̃(θ) := EeΥ̃1 , then

ϕΥ̃(θ) = (r − 1)ϕΥ(θ). Also E(Υ̃1) = ϕ′
Υ̃

(0) = 2r/(r − 2). So if we let

α2(r, γ) :=
1

γ
inf{x : IΥ̃(x) > log(r − 1)}, where IΥ̃(x) := sup

θ∈R

{
θx− logϕΥ̃(θ)

}
is the large deviation rate function for Υ̃1, then α2(r, γ) > 2r/γ(r− 2) as IΥ̃(2r/(r− 2)) = 0.
For this choice of α2, (2) follows by using standard large deviation argument. �

Now we use Lemma 5.3 to show that the behavior of the random walk S̃m at 0 does not
slow it down too much.

distance traveled Lemma 5.4. Let {S̃m : m ≥ 0} be a discrete time simple random walk with transitions

as in (5.6). For any γ > 0 there is a constant α3(r, γ) > 4r/γ(r − 2) such that P (S̃m =

0 for some m > α3(r, γ)L) ≤ 3(r − 1)−L/γ.

Proof. Suppose S̃0 = k. Let Υi, 1 ≤ i ≤ k, be the time required for the random walk to come
to k − i from k − i + 1. Also let Ψj(orΥk+j), j ≥ 1, be the time it takes to return to 1 (or

0) after its jth (or (j + 1)th) visit to 1 (or 1). It is easy to check that (i) Ψis are iid and the
common distribution is geometric with success probability (r − 2)/2r, (ii) Υis are i.i.d. and

the common distribution is same as that of Υ|{S̃0 = 1} of Lemma 5.3, and (iii) Ψis and Υis
are independent. Now let

ς := min{i ≥ 1 : Υi =∞} so that S̃m ≥ 1 for all m ≥
ς−1∑
i=1

Υi +

ς∑
i=1

Ψi.

To estimate the above sum first note that

P (ς > L/γ) ≤ (r − 1)−L/γ (5.7) varsigmabd
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by (1) of Lemma ??. On the other hand, if ς ≤ L/γ, then (2) of Lemma 5.3 with α2 = α2(r, γ)
and the independence of Υis suggest that

P

(
ς−1∑
i=1

Υi > α2L, ς ≤ L/γ

)
=

L/γ∑
i=2

P

 i−1∑
j=1

Υj > α2L

∣∣∣∣∣∣Υj <∞∀1j ≤ i− 1

P (ς = i)

≤ P

L/γ∑
j=2

Υj > α2L

∣∣∣∣∣∣Υj <∞∀j ≤ L/γ

 ≤ (r − 1)−L/γ .(5.8)

In addition, if we let ϕΨ(θ) := EeθΨ1 <∞ for θ < log(2r/(r + 2)) and

α4(r, γ) :=
1

γ
inf{x : IΨ(x) > log(r − 1)}, where IΨ(x) := sup

θ∈R
{θx− logϕΨ(θ)}

is the large deviation rate function for Ψis, then α4(r, γ) > 2r/γ(r−2), as IΨ(2r/(r−2)) = 0.
Once again using standard large deviation argument,

P

(
ς∑
i=1

Ψi > α4L, ς ≤ L/γ

)
≤ P

L/γ∑
i=1

Ψi > α4L

 ≤ (r − 1)−L/γ . (5.9) Psildp

Combining (5.7), (5.8) and (5.9), and taking α3 := α2 + α4, the desired result follows. �

Proof of Proposition 5.2 for v ∈ L1(Gn) \ L0(Gn). (1) Let α(r, γ, a, b) := 2α1(r, 2/(a + b)) +
α3(r, γ), where α1 and α3 are as in Lemma 5.1 and 5.4 respectively, and T̄ := T̄(ϑ−b)υn ∧
T̄(ϑ+b)υn ∧dKυne. Recalling the observation made just before (5.6) and noting that T̄ 1∧ T̄ 2 ≥
Kυn (as argued in the display before (5.3)),

if Hn := ∪2
i=1{S̄im ∈ Lv for some m ≥ α3(r, γ)υn}, then P (Hn) ≤ 6(r − 1)−υn/γ . (5.10) Kbd

by Lemma 5.4. Next we estimate P ({T̄ = Kυn} ∩Hc
n). On the event Hc

n if T̄0 > α3υn, then
{d(S̄1

m, S̄
2
m) : α3υn ≤ m ≤ T̄0 ∧ dKωne} is a random walk on Z with i.i.d. increments having

common distribution same as that of ∆1 of Lemma 5.1, as T̄ 1 ∧ T̄ 2 ≥ Kυn. So T̄ = dKυne
implies that the increment of the above random walk after (K −α3)υn many steps is at most
(a + b)υn. Since (K − α3)/2 = α1(r, 2/(a + b)) by our choice, we can use Lemma 5.1 with
m = 2υn to have

P ({T̄ = Kυn} ∩Hc
n) ≤ P

(K−α3(r,γ))υn∑
i=1

∆i < (a+ b)υn

 ≤ (r − 1)−(a+b)υn/2. (5.11) Tbar est3

Finally we estimate P ({T̄ = T̄(ϑ−b)υn} ∩ Hc
n). We say that S̄k is (i) ‘bad’ if either S̄1

k ∈
Lv, S̄2

k 6∈ Lv and d(S̄1
k , p(S̄2

k)) = b|Lv|/2c or S̄1
k 6∈ Lv, S̄2

k ∈ Lv and d(p(S̄1
k), S̄2

k) = b|Lv|/2c
(ii)‘very bad’ if S̄1

k , S̄
2
k ∈ Lv and d(S̄1

k , S̄
2
k) = b|Lv|/2c. It is easy to see that if ∆1 is as in

Lemma 5.1 and

∆̃ =

{
−1, 0 and +1 with probabilities 1/r, 1/r and (r − 2)/r respectively if |Lv| is odd

−1 and +1 with probabilities 2/r and (r − 2)/r respectively if |Lv| is even

then the kth increment

d(S̄1
k+1, S̄

2
k+1)− d(S̄1

k , S̄
2
k)

d
=


∆̃ if S̄k is very bad

∆̃ or ∆1 with probability 1/2 if S̄k is bad

∆1 otherwise.

.
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We call the kth increment to be ‘good’ (or ‘bad’) if it has law same as that of ∆1 (or ∆̃). Also
note that (i) every bad increment of -1 is followed by a good increment, (ii) on the event Hc

n,
the number of bad increments is at most α3υn and (iii) if S̄k is bad, then d(S̄1

k , S̄
2
k) ≥ b|Lv|/2c.

Combining these observations, coupling S̄k with another random walk whose increment has
law same as that of ∆1 and using optional stopping theorem,

P ({T̄ = T̄(ϑ−b)υn} ∩H
c
n) ≤ P

(
d(S̄1

0 , S̄
2
0) +

m∑
i=1

∆i hits (ϑ− b)υn + 1 before (ϑ+ a+ α3)υn

)

≤ (r − 1)−ϑυn − (r − 1)−(ϑ+a+α3)υn

(r − 1)−(ϑ−b)υn−1 − (r − 1)−(ϑ+a+α3)υn
≤ (r − 1)−bυn+1.. (5.12)

Combining (5.10), (5.11) and (5.12) and noting that T̄(ϑ+a)υn ≥ T̄(ϑ−b)υn ∧dKυne implies that

either T̄ = T̄(ϑ−b)υn or T̄ = dKυne, we get the result.
(2) Using similar argument which leads to (5.11) and letting α̃(r, γ) := 2α1(r, γ) + α3(r, γ),
where α1 and α3 are as in Lemma 5.1 and 5.4 respectively, we have

P
({
d
(
S̄1
dKυne, S̄

2
dKυne

)
< υn/γ

}
∩ {T̄0 > dKυne} ∩Hc

n

)
≤ P

d(K−α3)υne∑
i=1

∆i < υn/γ

 ≤ (r − 1)−υn/γ .

Combining the above bound with (5.10) we get the desired result. �

Now we use Proposition 5.2 and the coupling in Proposition 2.4 to prove the following
properties of the coalescing random walk system Ŝy

t (described just before (2.28)) starting
from y = (y1, y2), which is the main result of this section.

dual repulsion Proposition 5.5. Let Gn be as in (2.4) and log n� λn � n/(log n)η for some η > 0. There
are constants β,$0(η) > 0 such that

(1) if ωn = (1/$) logr−1(n/λn) for some $ ≥ $0 and εn := βωnλ
−3
n (1 + λn)2, then for

any fixed T > 0, Gn ∈ Gn and y = (y1, y2) satisfying d(y1, y2) ≥ ωn,

PGn,λn

(
d
(
Ŝy1s , Ŝ

y2
s

)
< ωn/2 for some s ∈ [0, T ]

)
≤ (r − 1)−ρ1(η)ωn for some ρ1(η) > 0,

PGn,λn

(
d
(
Ŝy1s , y2

)
< ωn/2 for some s ∈ [0, T ]

)
≤ (r − 1)−ρ(η)ωn for some ρ(η) > 0, and

(2) if ωn ≤ (1/3$0) logr−1(n/λn) and εn is as in (1), then for any fixed T > 0

PGn,λn

({
d(Ŝy1s , Ŝ

y2
s ) < ωn for some s ∈ [εn, T ]

}
∩
{
Ŝy1s 6= Ŝy2s ∀s ∈ [0, εn]

})
→ 0 uniformly in Gn ∈ Gn.

Proof. For α and α̃ are as in Proposition 5.2 let β := α̃(r, 1/3) and

η′ = 1/4,K := α(r, 8, 1/8, 1/8), $0 := max{5(K + 1), 15(3β + 1)/2} if lim sup
n→∞

(log λn/ log n) < 1

$0 = η/16, η′($) = 4$/η,K = max{α(r, 2/η′, η′ − 1/4, 3/4), α(r, 2/η′, η′/2, η′/2)} otherwise.

The choices of K and $0 ensures that for ωn = (1/$) logr−1(n/λn), $ ≥ $0,

(i)(1/2 +K)ωn ≤ (1/5) logr−1 n for large enough n (ii)(r − 1)(η′/4)ωn � log n, (5.13) check hyp1

which will be needed in what follows.
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(1) Recall the coalescing random walk system Sλn,yt described before (2.31) and let

D := {(x, y) : x, y ∈ [n] and d(x, y) ≤ 3ωn/4}, Ty
D := inf{t > 0 : Sλn,yt ∈ D},

R := inf
{
t > 0 : dTV

(
Sλn,yit , U[n]

)
≤ 1/n2 for each i = 1, 2

}
.

Note that if sup0≤s≤T d(Ŝyis , S
λn,yi
s ) ≤ ωn/8 for each i = 1, 2 and d(Ŝy1s , Ŝ

y2
s ) < ωn/2 for some s ∈

[0, T ], then using triangle inequality Ty
D ≤ T . This implies

PGn,λn

(
d
(
Ŝy1s , Ŝ

y2
s

)
< ωn/2 for some s ∈ [0, T ]

)
≤ PGn,λn

(
∪2
i=1

{
sup

0≤s≤T
d(Ŝyis , S

λn,yi
s ) ≥ ωn/8

})
+ PGn,λn(Ty

D ≤ R) + PGn,λn(R < Ty
D ≤ T )

(5.14) break up1

By (1a) of Lemma 2.4 the first term in the right hand side of (5.14) is ≤ C1(r − 1)−c1ωn for
some constants C1, c1 > 0, which only depend on T . To bound the second term note that
for Gn ∈ Gn if we let v be a midpoint of y in the sense of (5.2), then the distribution of

{S̄Y
m : m ≥ 0} is same as that of the underlying discrete time jumps of {Sλn,ys : s ≥ 0}. So

using (1) of Proposition 5.2 ((i) of (5.13) ensures that the hypothesis holds) we have

PGn,λn

(
d
(
Sλn,y1s , Sλn,y2s

)
fails to reach (3/4 + η′)ωn without hitting 3ωn/4

)
≤ C2(r − 1)−c2(η)ωn (5.15) separation incr1

for some constants C2, c2 > 0. Another application of (1) of Proposition 5.2 suggests that

after reaching ((3/4 + η′)ωn whenever the distance between Sλn,y1s and Sλn,y2s reaches (3/4 +
η′/2)ωn, it fails to increase to (3/4 + η′)ωn before deceasing to 3ωn/4 in one attempt with

probability ≤ C3(r − 1)−ωnη′/2. At least ωnη
′ steps are needed in the Sλn,yt system between

two successive occasions when the distance between the two particles equals (3/4 + η′/2)ωn
and hits {(3/4 + η′)ωn, 3ωn/4} in between. So

PGn,λn

(
d
(
Sλn,y1s , Sλn,y2s

)
hits 3ωn/4 after reaching (3/4 + η′)ωn before (ωnη

′)(r − 1)ωnη′/4

many steps are taken in Sλn,yt system
)
≤ C3(r − 1)−ωnη′/4. (5.16)

Since both the particles in Sλn,yt system are always equally likely to jump, standard large

deviation argument suggests that with probability ≥ 1− (r − 1)−c4(η)ωn each of the particles

jumps at least (ωnη
′/4)(r − 1)ωnη′/4 many times before (ωnη

′)(r − 1)ωnη′/4 many steps are

taken in Sλn,yt system.
Combining the above observations, noting that the TV distance between U[n] and the law

of Sλn,yit reduces to 1/n2 before the particle jumps O(log n) times and using (ii) of (5.13),

PGn,λn

(
Ty
D ≤ R

)
≤ C5(r − 1)−c5ωn . (5.17) reach stationary1

To bound the third term in the right hand side of (5.14) note that if we writing un and uDn for
U[n]×U[n] and its restriction to D, then PGn,λn(R < Ty

D ≤ T ) ≤ 1/n2+PGn,λn(Tu
D ≤ T |u ∼ un)

by the definition of R. So using (6.8.2) of [3], which is am implication of Proposition 23 in
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Aldous and Fill (2003), to bound PGn,λn(Tu
D ≤ T |u ∼ un)

PGn,λn(R < Ty
D ≤ T ) ≤ 1/n2 + 1− exp

(
− T

EGn,λn(Tu
D|u ∼ un)

)
+

c6

EGn,λn(Tu
D|u ∼ un)

≤ 1/n2 + C6/EGn,λn(Tu
D|u ∼ un). (5.18) AldFill

Following the proof of (6.8.3) in [3] (see page 179),

1

λn
· 1

U[n] × U[n](D)
= EGn,λn(Tu

D|u ∼ uDn )

= o(n) + EGn,λn(Tu
D|u ∼ uDn , T

u
D � log n)PGn,λn(Tu

D � log n|u ∼ uDn )

= o(n) + EGn,λn(Tu
D|u ∼ un)PGn,λn(Tu

D � log n|u ∼ uDn ). (5.19) mean hit

The extra 1/λn factor appears in the beginning of the above display because the particles

in the Sλn,·t system jumps at rate λn. Also note that un(D) ≤ r(r − 1)ωn/n(r − 2) and
PGn,λn(Tu

D � log n|u ∼ uDn ) = (r − 2)/r + o(1). So combining (5.18) and (5.19) the third
term in the right hand side of (5.14) is

≤ C7
λn(r − 1)ωn

n
= C7(r − 1)−c7(η)ωn

for some constants C7, c7. This completes the proof of the first assertion of (1). The proof of
the other assertion is similar.
(2) Using triangle inequality it is easy to see that

PGn,λn

({
d(Ŝy1s , Ŝ

y2
s ) < ωn for some s ∈ [εn, T ]

}
∩
{
Ŝy1s 6= Ŝy2s for all s ∈ [0, εn]

})
≤ PGn,λn

({
d(Sλn,y1s , Sλn,y2s ) < 3ωn/2 for some s ∈ [εn, T ]

}
∩
{
Sλn,y1s 6= Sλn,y2s ∀s ∈ [0, εn]

})
+ PGn,λn

(
∪2
i=1

{
sup

0≤s≤T
d(Ŝy1s , S

λn,y2
s ) > ωn/4

})
+ PGn,λn

({
Ŝy1s 6= Ŝy2s for all s ∈ [0, εn]

}
∩
{
Sλn,y1s = Sλn,y2s for some s ∈ [0, εn]

})
(5.20) break up

Using (1a) of Proposition 2.4 the second term in the right hand side of (5.20) is o(1). To

bound the third term note that if d(Ŝy1s , S
λn,yi
s ) ≤ 1 for all s ∈ [0, εn], then the event of interest

occurs only when one of the two particles Ŝyis has a single voting time and the corresponding
wake up dot in between a single voting time and the corresponding single wake up dot for
the other particle. The probability of one such occurrence is at most 1/λn by (2.32), and so
imitating the proof of (1b) of Proposition 2.4 the third term in the right hand side of (5.20)
is at most 2(εn + 1/λn).

To bound the first term in the right hand side of (5.20), let U1 be the number of steps

taken in Sλn,yt system before time εn. Clearly U1 has Poisson distribution with mean 2βωn
and

PGn,λn(U1 6∈ [βωn, 3βωn]) = o(1) (5.21) Ubd

by standard large deviation argument. Now note that for Gn ∈ Gn if we let v be the mid-

point of y in the sense of (5.2), then {U1 = Lωn} ⊂ {Sλn,yεn
d
= S̄Lωn} (described just before

Proposition 5.2). So if U1 = Lωn and d(Sλn,y10 , Sλn,y20 ) > (L + 3)ωn for some L, then obvi-

ously d(Sλn,y1εn , Sλn,y2εn ) > 3ωn. Also if U1 = Lωn and d(Sλn,y10 , Sλn,y20 ) ≤ (L + 3)ωn for some
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L ∈ [β, 3β], then we can apply (2) of Proposition 5.2 with γ = 1/3, because the choices of β
and $0 ensure the requirements for L. These observations together with (5.21) give

PGn,λn

({
d
(
Sλn,y1εn , Sλn,y2εn

)
< 3ωn

}
∩
{
Sλn,y1s 6= Sλn,y2s ∀s ∈ [0, εn]

})
= o(1).

Also note that (1) of this lemma suggests

PGn,λn

({
d
(
Sλn,y1s , Sλn,y2s

)
< 3ωn/2

}
∩
{
d
(
Sλn,y1εn , Sλn,y2εn

)
≥ 3ωn

})
= o(1).

Combining last two displays the proof of (2) is complete. �
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